scholarly journals Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands

2007 ◽  
Vol 27 (10) ◽  
pp. 1493-1504 ◽  
Author(s):  
H.-S. Helmisaari ◽  
J. Derome ◽  
P. Nojd ◽  
M. Kukkola
2001 ◽  
Vol 21 (2-3) ◽  
pp. 193-198 ◽  
Author(s):  
K. Makkonen ◽  
H.-S. Helmisaari

2009 ◽  
Vol 29 (3) ◽  
pp. 445-456 ◽  
Author(s):  
H.-S. Helmisaari ◽  
I. Ostonen ◽  
K. Lohmus ◽  
J. Derome ◽  
A.-J. Lindroos ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


2019 ◽  
Vol 92 (5) ◽  
pp. 648-658 ◽  
Author(s):  
J Routa ◽  
A Kilpeläinen ◽  
V -P Ikonen ◽  
A Asikainen ◽  
A Venäläinen ◽  
...  

Abstract The aim of this study was to examine how intensified silviculture affects timber production (sawlogs and pulpwood) and its economic profitability (net present value [NPV], with 2 per cent interest rate) based on forest ecosystem model simulations. The study was conducted on Norway spruce and Scots pine stands located on medium-fertile upland forest sites under middle boreal conditions in Finland, under current climate and minor climate change (the RCP2.6 forcing scenario). In intensified silviculture, improved regeneration materials were used, with 10–20 per cent higher growth than the unimproved materials, and/or nitrogen (N) fertilization of 150 kg ha−1, once or twice during a rotation of 50–70 years. Compared to the baseline management regime, the use of improved seedlings, alone or together with N fertilization, increased timber production by up to 26–28 per cent and the NPV by up to 32–60 per cent over rotation lengths of 60–70 years, regardless of tree species (although more in spruce) or climate applied. The use of improved seedlings affected timber yield and NPV more than N fertilization. Minor climate change also increased these outcomes in Scots pine, but not in Norway spruce.


2019 ◽  
Vol 19 (5) ◽  
pp. 1429-1440 ◽  
Author(s):  
Matts Lindbladh ◽  
Lisa Petersson ◽  
Per-Ola Hedwall ◽  
Renats Trubins ◽  
Emma Holmström ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document