Fire Suppression's Effects on Forest Succession within a Central Idaho Wilderness

1988 ◽  
Vol 3 (3) ◽  
pp. 76-80 ◽  
Author(s):  
Stephen W. Barrett

Abstract In south-central Idaho, fire-scar and tree regeneration patterns in the Salmon River Breaks portion of the Frank Church River of No Return Wilderness suggest that primarily surface fires occurred frequently in semiarid ponderosa pine (Pinus ponderosa var. ponderosa)/Douglas-fir (Pseudotsuga menziesii var. glauca) forests. Efficient fire suppression since about 1935 has markedly reduced area fire frequency and has altered fuel succession, contributing to recent crown fire behavior in north- and east-facing stands. Prescribed fires might now be difficult to contain in these communities, but burning would help return fuels to pre-1935 conditions. West. J. Appl. For. 3(3):76-80, July 1988.

2006 ◽  
Vol 36 (4) ◽  
pp. 855-867 ◽  
Author(s):  
Megan L Van Horne ◽  
Peter Z Fulé

Fire scars have been used to understand the historical role of fire in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) ecosystems, but sampling methods and interpretation of results have been criticized for being statistically invalid and biased and for leading to exaggerated estimates of fire frequency. We compared "targeted" sampling, random sampling, and grid-based sampling to a census of all 1479 fire-scarred trees in a 1 km2 study site in northern Arizona. Of these trees, 1246 were sufficiently intact to collect cross-sections; of these, 648 had fire scars that could be cross-dated to the year of occurrence in the 200-year analysis period. Given a sufficient sample size (approximately n ≥ 50), we concluded that all tested sampling methods resulted in accurate estimates of the census fire frequency, with mean fire intervals within 1 year of the census mean. We also assessed three analytical techniques: (1) fire intervals from individual trees, (2) the interval between the tree origin and the first scar, and (3) proportional filtering. "Bracketing" fire regime statistics to account for purported uncertainty associated with targeted sampling was not useful. Quantifying differences in sampling approaches cannot resolve all the limitations of fire-scar methods, but does strengthen interpretation of these data.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 32
Author(s):  
Christopher I. Roos ◽  
Tammy M. Rittenour ◽  
Thomas W. Swetnam ◽  
Rachel A. Loehman ◽  
Kacy L. Hollenback ◽  
...  

Here, we show that the last century of fire suppression in the western U.S. has resulted in fire intensities that are unique over more than 900 years of record in ponderosa pine forests (Pinus ponderosa). Specifically, we use the heat-sensitive luminescence signal of archaeological ceramics and tree-ring fire histories to show that a recent fire during mild weather conditions was more intense than anything experienced in centuries of frequent wildfires. We support this with a particularly robust set of optically stimulated luminescence measurements on pottery from an archaeological site in northern New Mexico. The heating effects of an October 2012 CE prescribed fire reset the luminescence signal in all 12 surface samples of archaeological ceramics, whereas none of the 10 samples exposed to at least 14 previous fires (1696–1893 CE) revealed any evidence of past thermal impact. This was true regardless of the fire behavior contexts of the 2012 CE samples (crown, surface, and smoldering fires). It suggests that the fuel characteristics from fire suppression at this site have no analog during the 550 years since the depopulation of this site or the 350 years of preceding occupation of the forested landscape of this region.


2005 ◽  
Vol 35 (12) ◽  
pp. 2875-2885 ◽  
Author(s):  
Leigh B Lentile ◽  
Frederick W Smith ◽  
Wayne D Shepperd

We compared patch structure, fire-scar formation, and seedling regeneration in patches of low, moderate, and high burn severity following the large (~34 000 ha) Jasper fire of 2000 that occurred in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the Black Hills of South Dakota, USA. This fire created a patchy mosaic of effects, where 25% of the landscape burned as low, 48% as moderate, and 27% as high severity. Dead cambium on a significant portion of tree circumference in a tree with live cambium and a vigorous crown was taken as evidence of incipient fire-scar formation. Tree mortality was approximately 21%, 52%, and 100% in areas of low, moderate, and high burn severity, respectively. Dead cambium was detected on approximately 24% and 44% of surviving trees in low and moderate burn severity patches, respectively. Three years postfire, regeneration densities were ~612 and 450 seedlings·ha–1 in low and moderate burn severity patches, respectively, and no regeneration was observed in the interior of high burn severity patches. Fire-scars will be found on 73% of the area burned in this fire, and large patches of multicohort forest will be created. Mixed-severity fire may have been common historically in the Black Hills, and in conjunction with frequent surface fire, played an important role in shaping a spatially heterogeneous, multicohort ponderosa pine forest.


2015 ◽  
Vol 45 (11) ◽  
pp. 1607-1616 ◽  
Author(s):  
Monica T. Rother ◽  
Thomas T. Veblen ◽  
Luke G. Furman

Climate change may inhibit tree regeneration following disturbances such as wildfire, altering post-disturbance vegetation trajectories. We implemented a field experiment to examine the effects of manipulations of temperature and water on ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings planted in a low-elevation, recently disturbed setting of the Colorado Front Range. We implemented four treatments: warmed only (Wm), watered only (Wt), warmed and watered (WmWt), and control (Co). We found that measures of growth and survival varied significantly by treatment type. Average growth and survival was highest in the Wt plots, followed by the Co, WmWt, and Wm plots, respectively. This general trend was observed for both conifer species, although average growth and survival was generally higher in ponderosa pine than in Douglas-fir. Our findings suggest that warming temperatures and associated drought are likely to inhibit post-disturbance regeneration of ponderosa pine and Douglas-fir in low-elevation forests of the Colorado Front Range and that future vegetation composition and structure may differ notably from historic patterns in some areas. Our findings are relevant to other forested ecosystems in which a warming climate may similarly inhibit regeneration by dominant tree species.


Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 23 ◽  
Author(s):  
Wade D. Steady ◽  
Raquel Partelli Feltrin ◽  
Daniel M. Johnson ◽  
Aaron M. Sparks ◽  
Crystal A. Kolden ◽  
...  

Improved predictions of tree species mortality and growth metrics following fires are important to assess fire impacts on forest succession, and ultimately forest growth and yield. Recent studies have shown that North American conifers exhibit a ‘toxicological dose-response’ relationship between fire behavior and the resultant mortality or recovery of the trees. Prior studies have not been conclusive due to potential pseudo-replication in the experimental design and time-limited observations. We explored whether dose-response relationships are observed in ponderosa pine (Pinus ponderosa) saplings exposed to surface fires of increasing fire behavior (as quantified by Fire Radiative Energy—FRE). We confirmed equivalent dose-response relationships to the prior studies that were focused on other conifer species. The post-fire growth in the saplings that survived the fires decreased with increasing FRE dosages, while the percentage mortality in the sapling dosage groups increased with the amount of FRE applied. Furthermore, as with lodgepole pine (Pinus contorta), a low FRE dosage could be applied that did not yield mortality in any of the replicates (r = 10). These results suggest that land management agencies could use planned burns to reduce fire hazard while still maintaining a crop of young saplings. Incorporation of these results into earth-system models and growth and yield models could help reduce uncertainties associated with the impacts of fire on timber growth, forest resilience, carbon dynamics, and ecosystem economics.


2013 ◽  
Vol 22 (8) ◽  
pp. 1021 ◽  
Author(s):  
Calvin A. Farris ◽  
Christopher H. Baisan ◽  
Donald A. Falk ◽  
Megan L. Van Horne ◽  
Peter Z. Fulé ◽  
...  

Fire history researchers employ various forms of search-based sampling to target specimens that contain visible evidence of well preserved fire scars. Targeted sampling is considered to be the most efficient way to increase the completeness and length of the fire-scar record, but the accuracy of this method for estimating landscape-scale fire frequency parameters compared with probabilistic (i.e. systematic and random) sampling is poorly understood. In this study we compared metrics of temporal and spatial fire occurrence reconstructed independently from targeted and probabilistic fire-scar sampling to identify potential differences in parameter estimation in south-western ponderosa pine forests. Data were analysed for three case studies spanning a broad geographic range of ponderosa pine ecosystems across the US Southwest at multiple spatial scales: Centennial Forest in northern Arizona (100ha); Monument Canyon Research Natural Area (RNA) in central New Mexico (256ha); and Mica Mountain in southern Arizona (2780ha). We found that the percentage of available samples that recorded individual fire years (i.e. fire-scar synchrony) was correlated strongly between targeted and probabilistic datasets at all three study areas (r=0.85, 0.96 and 0.91 respectively). These strong positive correlations resulted predictably in similar estimates of commonly used statistical measures of fire frequency and cumulative area burned, including Mean Fire Return Interval (MFI) and Natural Fire Rotation (NFR). Consistent with theoretical expectations, targeted fire-scar sampling resulted in greater overall sampling efficiency and lower rates of sample attrition. Our findings demonstrate that targeted sampling in these systems can produce accurate estimates of landscape-scale fire frequency parameters relative to intensive probabilistic sampling.


2012 ◽  
Vol 27 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Charles G. Shaw ◽  
D.W. Omdal ◽  
A. Ramsey-Kroll ◽  
L.F. Roth

Abstract A stand of ponderosa pine (Pinus ponderosa) severely affected by Armillaria root disease was treated with five different levels of sanitation by root removal to reduce root disease losses in the regenerating stand. Treatments included the following: (1) all trees pushed over by machine, maximum removal of roots by machine ripping, and visible remaining roots removed by hand; (2) all trees pushed over by machine and maximum removal of roots by machine ripping; (3) all trees pushed over by machine with no further removal of roots; (4) smaller trees pushed over by machine but large stumps left, otherwise maximum removal of roots by machine ripping; and (5) all trees felled and removed by skidding, area cleared of slash, sod scalped, and no removal of roots. After 35 years, we found that the more intense and thorough root-removal treatments were generally more effective in reducing the occurrence of Armillaria root disease. However, even the most intensive treatment (treatment 1), which experienced significantly less disease than most other treatments, had 23% of the area expressing mortality. The only operationally feasible treatment (treatment 3) also reduced levels of mortality, but not significantly (40% mortality versus 52% in the control, treatment 5). Although these results support the concept that inoculum removal can reduce root disease levels, the treatment necessary to provide a meaningful reduction in disease loss does not seem to warrant its cost.


1991 ◽  
Vol 69 (1) ◽  
pp. 117-121 ◽  
Author(s):  
R. Mark Brigham

I used radiotelemetry to study the roosting and foraging behaviour of big brown bats (Eptesicus fuscus) in south central British Columbia. Maternity colonies were found in hollows of dead ponderosa pine trees (Pinus ponderosa) and colony members were not loyal to specific trees. Individuals consistently foraged above a 300-m stretch of the Okanagan River, travelling 1.8 km on average from day roosts to the foraging area. There were significant differences in the duration of foraging bouts among different sex and age-classes. The results are compared with data collected in a similar manner for a population in Ontario, where, in contrast to British Columbia, E. fuscus were highly loyal to man-made roost structures and on average travelled less than 1 km to foraging sites that varied nightly. I suggest that the marked difference in both roosting and foraging behaviour is due to differences in the availability and structure of roosts and in the distribution of insect prey.


2012 ◽  
Vol 42 (3) ◽  
pp. 593-604 ◽  
Author(s):  
John P. Roccaforte ◽  
Peter Z. Fulé ◽  
W. Walker Chancellor ◽  
Daniel C. Laughlin

Severe forest fires worldwide leave behind large quantities of dead woody debris and regenerating trees that can affect future ecosystem trajectories. We studied a chronosequence of severe fires in Arizona, USA, spanning 1 to 18 years after burning to investigate postfire woody debris and regeneration dynamics. Snag densities varied over time, with predominantly recent snags in recent fires and broken or fallen snags in older fires. Coarse woody debris peaked at > 60 Mg/ha in the time period 6–12 years after fire, a value higher than previously reported in postfire fuel assessments in this region. However, debris loadings on fires older than 12 years were within the range of recommended management values (11.2–44.8 Mg/ha). Overstory and regeneration were most commonly dominated by sprouting deciduous species. Ponderosa pine ( Pinus ponderosa C. Lawson var. scopulorum Engelm.) overstory and regeneration were completely lacking in 50% and 57% of the sites, respectively, indicating that many sites were likely to experience extended periods as shrublands or grasslands rather than returning rapidly to pine forest. More time is needed to see whether these patterns will remain stable, but there are substantial obstacles to pine forest recovery: competition with sprouting species and (or) grasses, lack of seed sources, and the forecast of warmer, drier climatic conditions for coming decades.


1996 ◽  
Vol 6 (3) ◽  
pp. 97 ◽  
Author(s):  
PM Brown ◽  
CH Sieg

Chronologies of fire events were reconstructed from crossdated fire-scarred ponderosa pine trees for four sites in the south-central Black Hills. Compared to other ponderosa pine forests in the southwest US or southern Rocky Mountains, these communities burned less frequently. For all sites combined, and using all fires detected, the mean fire interval (MFI), or number of years between fire years, was 16 years (± 14 SD) for the period 1388 to 1900. When a yearly minimum percentage of trees recording scars of ≥ 25% is imposed, the MFI was 20 years (± 14 SD). The length of the most recent fire-free period (104 years, from 1890 to 1994) exceeds the longest intervals in the pre-settlement era (before ca. 1874), and is likely the result of human-induced land use changes. Based on fire scar position within annual rings, most past fires occurred late in the growing season or after growth had ceased for the year. These findings have important implications for management of ponderosa pine forests in the Black Hills and for understanding the role of fire in pre-settlement ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document