Role of Winter Annual Weeds as Alternative Hosts for Soybean Cyst Nematode

2008 ◽  
Vol 7 (1) ◽  
pp. 1-9 ◽  
Author(s):  
William G. Johnson ◽  
J. Earl Creech ◽  
Valerie A. Mock
Weed Science ◽  
2010 ◽  
Vol 58 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Valerie A. Mock ◽  
J. Earl Creech ◽  
Virginia R. Ferris ◽  
Steven G. Hallett ◽  
William G. Johnson

Soybean cyst nematode (SCN) is one of the most yield limiting pathogens in U.S. soybean production. Henbit and purple deadnettle are winter annual weeds shown to facilitate SCN reproduction after crop harvest in the eastern Corn Belt. These weeds, along with volunteer soybean that germinates in autumn after harvest, are common to postharvest soybean production fields and provide an opportunity for SCN reproduction and population increase outside of the typical soybean production season. The objective of this experiment was to determine if autumn removal of these weeds and volunteer soybean can influence the winter weed seedbank, plant biomass, and SCN population densities. Microplots were established with or without Lamium spp. and volunteer soybean, and four winter weed removal timings (none, October, December, and May). Dry weights of autumn Lamium spp. were reduced 50% in October when grown in competition with volunteer soybean. SCN juveniles were found in henbit roots at higher densities in October (42 per gram of root) than December (5 per gram of root) and were also found in the roots of volunteer soybean (14 per gram of root) in October. SCN egg population densities were 50% lower in August after the summer fallow period. The results of this experiment suggest that autumn removal of winter annual weeds and volunteer soybean did not reduce SCN populations.


2007 ◽  
Vol 21 (2) ◽  
pp. 532-536 ◽  
Author(s):  
J. Earl Creech ◽  
William G. Johnson ◽  
Jamal Faghihi ◽  
Virginia R. Ferris

2007 ◽  
Vol 21 (4) ◽  
pp. 1064-1070 ◽  
Author(s):  
J. Earl Creech ◽  
Jared S. Webb ◽  
Bryan G. Young ◽  
Jason P. Bond ◽  
S Kent Harrison ◽  
...  

A survey of seven production fields in Indiana, Illinois, and Ohio was conducted to assess henbit and purple deadnettle growth and soybean cyst nematode (SCN) development and reproduction on these weeds. Autumn and spring growth of purple deadnettle and henbit was influenced by location within each state. In general, winter annual weeds were larger in size and reached maturity earlier in the spring at the southern sample sites than those in the north. All growth stages of SCN were found to be associated with henbit and purple deadnettle at both autumn and spring sample timings. SCN juveniles were generally found infecting roots at highest abundance in the spring. SCN cyst and egg production also were widespread and occurred to a much higher degree during the autumn than the spring developmental period. The results of this survey indicate that management tactics designed to minimize the potential for SCN reproduction on winter annual weeds would probably be most effective if conducted in the autumn, when the majority of SCN reproduction occurred. However, spring populations of winter annual weeds that harbor SCN juveniles might facilitate additional SCN reproduction and population increase if the weeds are not controlled in a timely manner prior to planting.


Weed Science ◽  
2008 ◽  
Vol 56 (1) ◽  
pp. 103-111 ◽  
Author(s):  
J. Earl Creech ◽  
Andreas Westphal ◽  
Virginia R. Ferris ◽  
Jamal Faghihi ◽  
Tony J. Vyn ◽  
...  

Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 634-640 ◽  
Author(s):  
Valerie A. Mock ◽  
J. Earl Creech ◽  
Virginia R. Ferris ◽  
Jamal Faghihi ◽  
Andreas Westphal ◽  
...  

Certain winter annual weeds have been documented as alternative hosts to soybean cyst nematode (SCN), and infestations by such species are common in no-till production fields in the midwestern United States of Indiana, Ohio, and Illinois. The objective of this research was to determine the influence of crop rotation and winter annual weed management on winter weed growth, SCN population density, and crop yield. Two crop rotations (SS and soybean–corn rotation) and six winter annual weed-management systems (autumn-applied herbicide, spring-applied herbicide, autumn + spring applied herbicides, autumn-seeded Italian ryegrass, autumn-seeded wheat, and a nontreated check) were evaluated in long-term, no-tillage systems at West Lafayette, IN, and Vincennes, IN. In the fourth and fifth years of these experiments, the 2-yr corn–soybean rotation generally resulted in increased soybean yield, decreased winter annual weed growth, and reduced SCN population density compared with SS. Autumn or spring herbicide applications or both were a more effective option than cover crops at reducing winter annual weed density. Cover-crop systems generally did not differ from the nontreated check in winter weed density. Between years three and five, winter annual weed SCN hosts in nontreated check plots increased approximately threefold to levels as high as 102 and 245 plants m−2 at West Lafayette, IN, and Vincennes, IN, respectively, which are infestation levels at or above those commonly observed in production fields. However, controlling winter annual weeds did not influence crop yields or SCN population density. The results of these studies suggest that winter weed management, even at the high levels of weed infestation present in these studies, appears to have little value as a tool for SCN management in corn and soybean production systems in the midwestern United States.


2010 ◽  
Vol 24 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Vince M. Davis ◽  
Greg R. Kruger ◽  
Bryan G. Young ◽  
William G. Johnson

Horseweed (Conyza canadensis) is a common weed in no-till crop production systems. It is problematic because of the frequent occurrence of biotypes resistant to glyphosate and acetolactate synthase (ALS)-inhibiting herbicides and its ability to complete its life cycle as a winter or summer annual weed. Tactics to control horseweed while controlling other winter annual weeds routinely fail; herbicide application timing and spring emergence patterns of horseweed may be responsible. The objectives of this experiment were to (1) determine the influence of fall and spring herbicides with and without soil residual horseweed activity on spring-emerging glyphosate-resistant (GR) horseweed density and (2) evaluate the efficacy and persistence of saflufenacil on GR horseweed. Field studies were conducted in southern Indiana and Illinois from fall 2006 to summer 2007 and repeated in 2007 to 2008. Six preplant herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Horseweed plants were counted every 2 wk following the first spring application until the first week of July. Horseweed almost exclusively emerged in the spring at both locations. Spring horseweed emergence was higher when 2,4-D + glyphosate was fall-applied and controlled other winter annual weeds. With fall-applied 2,4-D + glyphosate, over 90% of the peak horseweed density was observed before April 25. In contrast, only 25% of the peak horseweed density was observed in the untreated check by April 25. Starting from the initiation of horseweed emergence in late March, chlorimuron + tribenuron applied early fall or early spring, and spring-applied saflufenacil at 100 g ai/ha provided greater than 90% horseweed control for 12 wk. Early spring–applied saflufenacil at 50 g ai/ha provided 8 wk of greater than 90% residual control, and early spring–applied simazine provided 6 wk of greater than 90% control. When applied in late spring, saflufenacil was the only herbicide treatment that reduced horseweed densities by greater than 90% compared to 2,4-D + glyphosate. We concluded from this research that fall applications of nonresidual herbicides can increase the rate and density of spring emerging horseweed. In addition, spring-applied saflufenacil provides no-till producers with a new preplant herbicide for foliar and residual control of glyphosate- and ALS-resistant horseweed.


Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 400-401 ◽  
Author(s):  
H. P. Cords

Established stands of alfalfa (Medicago sativa L. ‘Lahontan’) at six field locations were treated with soil-active herbicides during the dormant period for the control of winter annual weeds. Weeds and alfalfa were hand separated at the first harvest. This forage, which varied widely in weed content, was analyzed for protein. The percentage of protein correlated negatively with weed content in all cases. Analyses of covariance revealed that the direct effect of the herbicides on protein content was either small or absent and that the primary cause of the negative correlations was weed content.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 592-598 ◽  
Author(s):  
J. Earl Creech ◽  
Judith B. Santini ◽  
Shawn P. Conley ◽  
Andreas Westphal ◽  
William G. Johnson

An experiment was conducted in growth chambers to determine the influence of cold temperature regimes, designed to simulate winter temperature conditions and spring recovery, on the interaction between purple deadnettle and soybean cyst nematode (SCN). The study was a factorial arrangement of treatments with five levels of temperature (20, 15, 10, 5, or 0 C), two levels of exposure time to the temperature (10 or 20 d), and two levels of recovery time at 20 C following exposure (0 or 20 d). In general, purple deadnettle shoot and root growth increased with temperature and time. The ability of purple deadnettle to recover from cold temperatures declined as the length of time that the plant was subjected to the cold temperature increased. SCN juveniles per gram of root at the conclusion of the temperature treatment declined as the temperature increased from 0 to 15 C, likely a result of continued purple deadnettle root growth and the inhibition of SCN hatch, growth, or development at those temperatures. SCN female, cyst, and egg production per gram of root generally increased with temperature and occurred under all temperature regimes. The results of this research indicate that, after hatching, SCN juveniles can survive a period of cold temperature inside the roots of a winter annual and continue development when transferred to warmer temperatures. Therefore, in a field environment, where fall or spring alone may not be sufficient for SCN to complete a reproductive cycle on a winter annual weed, the nematode may be able to reproduce by combining the fall and spring developmental periods.


2009 ◽  
Vol 23 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Gregory R. Armel ◽  
Robert J. Richardson ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field studies were conducted to determine if mesotrione alone or in combinations with other corn herbicides would control horseweed and other winter annual weeds associated with no-till corn. Mesotrione alone controlled horseweed 52 to 80% by 3 wk after treatment (WAT); however, by 7 WAT control diminished to between 37 to 68%, depending on mesotrione rate. Mesotrione at 0.16 kg ai/ha plus atrazine at 0.28 kg ai/ha controlled 99% of horseweed and annual bluegrass and 88% of yellow woodsorrel. Combinations of mesotrione at 0.16 kg/ha plus acetochlor at 1.79 kg ai/ha plus 1.12 kg ai/ha glyphosate (trimethylsulfonium salt of glyphosate) or 0.7 kg ai/ha paraquat provided 93% or greater control of all three weed species. Glyphosate alone also controlled all weed species 97 to 99%, while paraquat alone provided 99% control of annual bluegrass, 72% control of horseweed, and 36% control of yellow woodsorrel. Mixtures of paraquat plus acetochlor improved control of horseweed (93%) and yellow woodsorrel (73%) over control with either herbicide applied alone.


Sign in / Sign up

Export Citation Format

Share Document