Purple Deadnettle (Lamium purpureum) and Soybean Cyst Nematode Response to Cold Temperature Regimes

Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 592-598 ◽  
Author(s):  
J. Earl Creech ◽  
Judith B. Santini ◽  
Shawn P. Conley ◽  
Andreas Westphal ◽  
William G. Johnson

An experiment was conducted in growth chambers to determine the influence of cold temperature regimes, designed to simulate winter temperature conditions and spring recovery, on the interaction between purple deadnettle and soybean cyst nematode (SCN). The study was a factorial arrangement of treatments with five levels of temperature (20, 15, 10, 5, or 0 C), two levels of exposure time to the temperature (10 or 20 d), and two levels of recovery time at 20 C following exposure (0 or 20 d). In general, purple deadnettle shoot and root growth increased with temperature and time. The ability of purple deadnettle to recover from cold temperatures declined as the length of time that the plant was subjected to the cold temperature increased. SCN juveniles per gram of root at the conclusion of the temperature treatment declined as the temperature increased from 0 to 15 C, likely a result of continued purple deadnettle root growth and the inhibition of SCN hatch, growth, or development at those temperatures. SCN female, cyst, and egg production per gram of root generally increased with temperature and occurred under all temperature regimes. The results of this research indicate that, after hatching, SCN juveniles can survive a period of cold temperature inside the roots of a winter annual and continue development when transferred to warmer temperatures. Therefore, in a field environment, where fall or spring alone may not be sufficient for SCN to complete a reproductive cycle on a winter annual weed, the nematode may be able to reproduce by combining the fall and spring developmental periods.

2007 ◽  
Vol 21 (4) ◽  
pp. 1064-1070 ◽  
Author(s):  
J. Earl Creech ◽  
Jared S. Webb ◽  
Bryan G. Young ◽  
Jason P. Bond ◽  
S Kent Harrison ◽  
...  

A survey of seven production fields in Indiana, Illinois, and Ohio was conducted to assess henbit and purple deadnettle growth and soybean cyst nematode (SCN) development and reproduction on these weeds. Autumn and spring growth of purple deadnettle and henbit was influenced by location within each state. In general, winter annual weeds were larger in size and reached maturity earlier in the spring at the southern sample sites than those in the north. All growth stages of SCN were found to be associated with henbit and purple deadnettle at both autumn and spring sample timings. SCN juveniles were generally found infecting roots at highest abundance in the spring. SCN cyst and egg production also were widespread and occurred to a much higher degree during the autumn than the spring developmental period. The results of this survey indicate that management tactics designed to minimize the potential for SCN reproduction on winter annual weeds would probably be most effective if conducted in the autumn, when the majority of SCN reproduction occurred. However, spring populations of winter annual weeds that harbor SCN juveniles might facilitate additional SCN reproduction and population increase if the weeds are not controlled in a timely manner prior to planting.


Weed Science ◽  
2010 ◽  
Vol 58 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Valerie A. Mock ◽  
J. Earl Creech ◽  
Virginia R. Ferris ◽  
Steven G. Hallett ◽  
William G. Johnson

Soybean cyst nematode (SCN) is one of the most yield limiting pathogens in U.S. soybean production. Henbit and purple deadnettle are winter annual weeds shown to facilitate SCN reproduction after crop harvest in the eastern Corn Belt. These weeds, along with volunteer soybean that germinates in autumn after harvest, are common to postharvest soybean production fields and provide an opportunity for SCN reproduction and population increase outside of the typical soybean production season. The objective of this experiment was to determine if autumn removal of these weeds and volunteer soybean can influence the winter weed seedbank, plant biomass, and SCN population densities. Microplots were established with or without Lamium spp. and volunteer soybean, and four winter weed removal timings (none, October, December, and May). Dry weights of autumn Lamium spp. were reduced 50% in October when grown in competition with volunteer soybean. SCN juveniles were found in henbit roots at higher densities in October (42 per gram of root) than December (5 per gram of root) and were also found in the roots of volunteer soybean (14 per gram of root) in October. SCN egg population densities were 50% lower in August after the summer fallow period. The results of this experiment suggest that autumn removal of winter annual weeds and volunteer soybean did not reduce SCN populations.


2007 ◽  
Vol 21 (2) ◽  
pp. 532-536 ◽  
Author(s):  
J. Earl Creech ◽  
William G. Johnson ◽  
Jamal Faghihi ◽  
Virginia R. Ferris

Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 665-670 ◽  
Author(s):  
J. Earl Creech ◽  
Jamal Faghihi ◽  
Virginia R. Ferris ◽  
Andreas Westphal ◽  
William G. Johnson

A greenhouse study was conducted to determine the effect of henbit and purple deadnettle density on weed biomass accumulation and soybean cyst nematode (SCN) reproduction. SCN did not impact shoot or root dry weight of purple deadnettle, henbit, or soybean. Foliar and root biomass of henbit and purple deadnettle were comparable but the biomass per stem was higher for purple deadnettle. Shoot and root biomass per pot of henbit and purple deadnettle at corresponding plant densities were statistically similar and were generally higher with increasing plant density. Henbit produced a greater number of stems than purple deadnettle and the least number of stems for both species existed at low densities. Purple deadnettle allowed for more SCN reproduction than did henbit. Weed densities also influenced SCN cyst and egg production but the results were species dependent. The highest SCN reproduction per pot was supported at low to moderate densities of purple deadnettle but at moderate to high densities of henbit. These results suggest that purple deadnettle should be more aggressively managed than henbit in management programs for SCN, but that henbit, especially at high densities, can support SCN reproduction at levels near those of purple deadnettle.


2008 ◽  
Vol 7 (1) ◽  
pp. 1-9 ◽  
Author(s):  
William G. Johnson ◽  
J. Earl Creech ◽  
Valerie A. Mock

Weed Science ◽  
2008 ◽  
Vol 56 (1) ◽  
pp. 103-111 ◽  
Author(s):  
J. Earl Creech ◽  
Andreas Westphal ◽  
Virginia R. Ferris ◽  
Jamal Faghihi ◽  
Tony J. Vyn ◽  
...  

2015 ◽  
Vol 29 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Rodrigo Werle ◽  
Loren J. Giesler ◽  
Mark L. Bernards ◽  
John L. Lindquist

Soybean cyst nematode (SCN) is a major soybean yield–limiting disease in the United States. Henbit, a winter annual species common to no-till fields in the midwestern United States, is known to act as an alternative host for SCN. A simulation was performed to estimate how likely SCN was to reproduce on henbit roots during a 30-yr period in two important soybean production areas of Nebraska. Simulations were conducted using published information on henbit seedling emergence, SCN reproduction on henbit roots, and SCN response to soil temperature. Results indicate that SCN would be able to complete one generation on henbit roots under Nebraska conditions. The SCN reproductive cycle was not likely to be completed before the winter in south central Nebraska, but one SCN generation was predicted to be completed in the fall in 2 out of 30 simulation years (7% likelihood) in southeast Nebraska. Based on our predictions, to reduce the chances of SCN population build-up in the absence of its main host (soybean), weed management in fields infested with both henbit and SCN should be completed after crop harvest in the fall when most henbit seedlings have emerged and are growing but the SCN developing on henbit roots have not yet achieved full maturity in Nebraska.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 634-640 ◽  
Author(s):  
Valerie A. Mock ◽  
J. Earl Creech ◽  
Virginia R. Ferris ◽  
Jamal Faghihi ◽  
Andreas Westphal ◽  
...  

Certain winter annual weeds have been documented as alternative hosts to soybean cyst nematode (SCN), and infestations by such species are common in no-till production fields in the midwestern United States of Indiana, Ohio, and Illinois. The objective of this research was to determine the influence of crop rotation and winter annual weed management on winter weed growth, SCN population density, and crop yield. Two crop rotations (SS and soybean–corn rotation) and six winter annual weed-management systems (autumn-applied herbicide, spring-applied herbicide, autumn + spring applied herbicides, autumn-seeded Italian ryegrass, autumn-seeded wheat, and a nontreated check) were evaluated in long-term, no-tillage systems at West Lafayette, IN, and Vincennes, IN. In the fourth and fifth years of these experiments, the 2-yr corn–soybean rotation generally resulted in increased soybean yield, decreased winter annual weed growth, and reduced SCN population density compared with SS. Autumn or spring herbicide applications or both were a more effective option than cover crops at reducing winter annual weed density. Cover-crop systems generally did not differ from the nontreated check in winter weed density. Between years three and five, winter annual weed SCN hosts in nontreated check plots increased approximately threefold to levels as high as 102 and 245 plants m−2 at West Lafayette, IN, and Vincennes, IN, respectively, which are infestation levels at or above those commonly observed in production fields. However, controlling winter annual weeds did not influence crop yields or SCN population density. The results of these studies suggest that winter weed management, even at the high levels of weed infestation present in these studies, appears to have little value as a tool for SCN management in corn and soybean production systems in the midwestern United States.


Sign in / Sign up

Export Citation Format

Share Document