scholarly journals Diversity, Distribution, and Evolution of Solanum bulbocastanum Late Blight Resistance Genes

2010 ◽  
Vol 23 (9) ◽  
pp. 1206-1216 ◽  
Author(s):  
Anoma A. Lokossou ◽  
Hendrik Rietman ◽  
Miqia Wang ◽  
Pavel Krenek ◽  
Hanneke van der Schoot ◽  
...  

Knowledge on the evolution and distribution of late blight resistance genes is important for a better understanding of the dynamics of these genes in nature. We analyzed the presence and allelic diversity of the late blight resistance genes Rpi-blb1, Rpi-blb2, and Rpi-blb3, originating from Solanum bulbocastanum, in a set of tuber-bearing Solanum species comprising 196 different taxa. The three genes were only present in some Mexican diploid as well as polyploid species closely related to S. bulbocastanum. Sequence analysis of the fragments obtained from the Rpi-blb1 and Rpi-blb3 genes suggests an evolution through recombinations and point mutations. For Rpi-blb2, only sequences identical to the cloned gene were found in S. bulbocastanum accessions, suggesting that it has emerged recently. The three resistance genes occurred in different combinations and frequencies in S. bulbocastanum accessions and their spread is confined to Central America. A selected set of genotypes was tested for their response to the avirulence effectors IPIO-2, Avr-blb2, and Pi-Avr2, which interact with Rpi-blb1, Rpi-blb2, and Rpi-blb3, respectively, as well as by disease assays with a diverse set of isolates. Using this approach, some accessions could be identified that contain novel, as yet unknown, late blight resistance factors in addition to the Rpi-blb1, Rpi-blb2, and Rpi-blb3 genes.

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 732
Author(s):  
Fergus Meade ◽  
Ronald Hutten ◽  
Silke Wagener ◽  
Vanessa Prigge ◽  
Emmet Dalton ◽  
...  

Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21–47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Dennis A. Halterman ◽  
Lara Colton Kramer ◽  
Susan Wielgus ◽  
Jiming Jiang

Late blight of potato, caused by Phytophthora infestans, is one of the most devastating diseases of potato. A major late blight resistance gene, called RB, previously was identified in the wild potato species Solanum bulbocastanum through map-based cloning. The full-length gene coding sequence, including the open reading frame and promoter, has been integrated into cultivated potato (S. tuberosum) using Agrobacterium-mediated transformation. RB-containing transgenic plants were challenged with P. infestans under optimal late blight conditions in greenhouse experiments. All transgenic lines containing RB exhibited strong foliar resistance. Field-grown transgenic tubers also were tested for resistance to P. infestans. In contrast to the foliar resistance phenotype, RB-containing tubers did not exhibit increased resistance. Two years of field trials were used to ascertain whether the presence of RB had any effect on tuber yield. We were unable to detect any significant effect on tuber size or yield after addition of the resistance gene to several S. tuberosum cultivars.


2005 ◽  
Vol 44 (2) ◽  
pp. 208-222 ◽  
Author(s):  
Edwin A.G. Vossen ◽  
Jack Gros ◽  
Anne Sikkema ◽  
Marielle Muskens ◽  
Doret Wouters ◽  
...  

2005 ◽  
Vol 18 (7) ◽  
pp. 722-729 ◽  
Author(s):  
Tae-Ho Park ◽  
Jack Gros ◽  
Anne Sikkema ◽  
Vivianne G. A. A. Vleeshouwers ◽  
Marielle Muskens ◽  
...  

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpiabpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.


1959 ◽  
Vol 37 (1) ◽  
pp. 41-49 ◽  
Author(s):  
K. M. Graham ◽  
J. S. Niederhauser ◽  
Leopoldo Servin

Solanum balbocastanum Dun. was collected extensively throughout its range in Mexico and Guatemala. Experimental self- and cross-pollinations showed that the species is highly self-sterile and consists of cross-sterile and cross-fertile individuals. Self-sterility may be due to the presence of incompatibility factors or to triploidy. Authentic hybrids were produced between S. bulbocastanum and S. trifidum Correll, and between S. bulbocastanum and S. pinnatisectum Dun.After inoculation with race 1.2.3.4 of Phytophthora infestans three types of reaction were observed among 1148 seedlings of S. bulbocastanum: immunity with no perceptible lesions, resistance expressed by non-sporulating lesions of the hypersensitive type, and susceptibility indicated by large sporulating necrotic lesions. Seedlings resistant to an isolate of race 1.2.3.4 of Canadian origin did not always show the same level of resistance to a Mexican isolate of the same race. Varying degrees of field resistance were observed among seedling plants, while tuber-propagated plants were generally field immune. Solanum bulbocastanum is considered a mixture of resistant and susceptible genotypes.


2014 ◽  
Vol 40 (1) ◽  
pp. 10-13
Author(s):  
E. V. Rogozina ◽  
V. A. Kolobaev ◽  
E. E. Khavkin ◽  
M. A. Kuznetsova ◽  
M. P. Beketova ◽  
...  

2009 ◽  
Vol 22 (4) ◽  
pp. 437-446 ◽  
Author(s):  
James M. Bradeen ◽  
Massimo Iorizzo ◽  
Dimitre S. Mollov ◽  
John Raasch ◽  
Lara Colton Kramer ◽  
...  

Late blight of potato ranks among the costliest of crop diseases worldwide. Host resistance offers the best means for controlling late blight, but previously deployed single resistance genes have been short-lived in their effectiveness. The foliar blight resistance gene RB, previously cloned from the wild potato Solanum bulbocastanum, has proven effective in greenhouse tests of transgenic cultivated potato. In this study, we examined the effects of the RB transgene on foliar late blight resistance in transgenic cultivated potato under field production conditions. In a two-year replicated trial, the RB transgene, under the control of its endogenous promoter, provided effective disease resistance in various genetic backgrounds, including commercially prominent potato cultivars, without fungicides. RB copy numbers and transcript levels were estimated with transgene-specific assays. Disease resistance was enhanced as copy numbers and transcript levels increased. The RB gene, like many other disease resistance genes, is constitutively transcribed at low levels. Transgenic potato lines with an estimated 15 copies of the RB transgene maintain high RB transcript levels and were ranked among the most resistant of 57 lines tested. We conclude that even in these ultra–high copy number lines, innate RNA silencing mechanisms have not been fully activated. Our findings suggest resistance-gene transcript levels may have to surpass a threshold before triggering RNA silencing. Strategies for the deployment of RB are discussed in light of the current research.


Sign in / Sign up

Export Citation Format

Share Document