scholarly journals Continual Green-Fluorescent Protein Monitoring of Cauliflower Mosaic Virus 35S Promoter Activity in Nematode-Induced Feeding Cells in Arabidopsis thaliana

1997 ◽  
Vol 10 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Peter E. Urwin ◽  
Simon G. Møller ◽  
Catherine J. Lilley ◽  
Michael J. McPherson ◽  
Howard J. Atkinson

The responsiveness of the cauliflower mosaic virus 35S promoter in feeding sites developed by both sexes of Heterodera schachtii and female Meloidogyne incognita has been studied. The objective was to establish the value of green-fluorescent protein (GFP) as a nondestructive reporter gene system for characterizing promoter activity at nematode feeding sites in vivo. Growth units were devised that allowed individual feeding sites in roots of Arabidopsis thaliana to be observed by both bright-field and epifluorescent illumination. Changes in GFP expression were visually observed under experimental conditions that resulted in chloroplast formation in syncytia but not other root cells. Changes in GFP levels altered the extent of quenching, by this protein, of red light emitted by chlorophyll within the chloroplasts under violet excitation. Image analysis provided a semiquantitative basis for simultaneous measurement of changes in GFP fluorescence and the unquenched emission by chlorophyll. GFP levels were constant in cells surrounding the syncytium induced by H. schachtii, but they fell progressively from 10 to 35 days postinfection within this structure. Significant reduction in GFP levels was not limited to the early part of the time course but also occurred between 27 and 35 days postinfection. GFP was detected by immunoblotting in females of M. incognita but not in H. schachtii parasitizing similar GFP-expressing roots.

Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1851-1855 ◽  
Author(s):  
Carole L. Thomas ◽  
Andrew J. Maule

To investigate the process of tubule formation for the cauliflower mosaic virus movement protein (CaMV MP), the green fluorescent protein (GFP) was fused to the MP to provide a vital marker for MP location after expression in insect cells. In contrast to the long tubular structures seen previously following baculovirus-based expression of the wild-type MP, the fusion protein produced only aggregates of fluorescing material in the cytoplasm. However, by co-expressing wild-type MP and GFP–MP, or by engineering their co-accumulation by introducing a foot-and-mouth disease virus 2A cleavage sequence between GFP and MP, long GFP-fluorescing tubules were formed. The experiments suggest that the presence of GFP at the N or C terminus of the tubule-forming domain of the CaMV MP places steric constraints upon the aggregation of the MP into a tubule but that this can be overcome by providing wild-type protein for inclusion in the aggregate.


2001 ◽  
Vol 14 (8) ◽  
pp. 1026-1031 ◽  
Author(s):  
Zhong Huang ◽  
Yu Han ◽  
Stephen H. Howell

Fusions between the green fluorescent protein (GFP) and the Cauliflower mosaic virus (CaMV) movement protein (MP) induce the formation of fluorescent foci and surface tubules in Arabidopsis thaliana leaf mesophyll protoplasts. Tubules elongate coordinately and progressively in an assembly process approximately 6 to 12 h following transfection of protoplasts with GFP-MP constructs. Tubules are not formed in protoplasts transfected by GFP-MPER2A, a MP mutation that renders CaMV noninfectious. A small number of short tubules are formed on protoplasts transfected by GFP-MPN6 and GFP-MPN13, two second-site revertants of ER2A that partially restore infectivity. Protoplasts cotransfected with cyan fluorescent protein (CFP)-MPWT and GFP-MPER2A form tubules containing both MP fusions, indicating that although the GFP-MPER2A cannot induce tubule formation, GFP-MPER2A can coassemble or colocalize with CFP-MPWT in tubules. Thus, CaMV MP-induced tubule formation in protoplasts correlates closely with the infectivity of mutation ER2A and its revertants, suggesting that tubule-forming capacity in plant protoplasts reflects a process required for virus infection or movement.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0213087 ◽  
Author(s):  
Beatriz Dáder ◽  
Myriam Burckbuchler ◽  
Jean-Luc Macia ◽  
Carine Alcon ◽  
Catherine Curie ◽  
...  

1999 ◽  
Vol 12 (3) ◽  
pp. 189-196 ◽  
Author(s):  
David J. Bertioli ◽  
Matthew Smoker ◽  
Paul R. Burrows

Root-knot and cyst nematodes are obligate plant parasites that induce complex biotrophic feeding structures in host roots. The mechanisms by which nematodes regulate host gene expression to produce feeding sites are unknown. The cauliflower mosaic virus (CaMV) 35S promoter has been reported to be repressed strongly in the feeding sites of both root-knot and cyst nematodes. In contrast, other work has indicated that this promoter is partially active in some feeding sites. Considering the importance of the 35S promoter in biotechnology, we have defined the nematoderesponsive nature of this promoter in more detail. Transgenic tobacco harboring various 35S-uidA constructs was assayed for β-glucuronidase (GUS) activity after infection by root-knot nematodes (Meloidogyne incognita) and cyst nematodes (Globodera tabacum subsp. tabacum). The entire 35S promoter (-343 to +8) was active in giant cells induced by M. incognita and, to a lesser extent, the syncytia of G. tabacum subsp. tabacum. In the latter case, activity decreased as the feeding sites matured. Subdomains of the 35S promoter were also active in feeding sites, particularly B4 and B5 in giant cells. However, subdomain B3 was strongly down-regulated in gall tissue and syncytia. In total, 14 constructs were studied and nematode-responsive expression was always stronger and more consistent with the root-knot nematode than the cyst nematode.


2012 ◽  
Vol 39 (9) ◽  
pp. 764 ◽  
Author(s):  
Gi-Ho Lee ◽  
Seong-Han Sohn ◽  
Eun-Young Park ◽  
Young-Doo Park

The chemical modification of DNA by methylation is a heritable trait and can be subsequently reversed without altering the original DNA sequence. Methylation can reduce or silence gene expression and is a component of a host’s defence response to foreign nucleic acids. In our study, we employed a plant transformation strategy using Nicotiana benthamiana Domin to study the heritable stability of the introduced transgenes. Through the introduction of the cauliflower mosaic virus (CaMV) 35S promoter and the green fluorescent protein (GFP) reporter gene, we demonstrated that this introduced promoter often triggers a homology-dependent gene-silencing (HDGS) response. These spontaneous transgene-silencing phenomena are due to methylation of the CaMV 35S promoter CAAT box during transgenic plant growth. This process is catalysed by SU(VAR)3–9 homologue 9 (SUVH9), histone deacetylase 1 (HDA1) and domains rearranged methylase 2 (DRM2). In particular, we showed from our data that SUVH9 is the key regulator of methylation activity in epigenetically silenced GFP transgenic lines; therefore, our findings demonstrate that an introduced viral promoter and transgene can be subject to a homology-dependent gene-silencing mechanism that can downregulate its expression and negatively influence the heritable stability of the transgene.


2002 ◽  
Vol 92 (2) ◽  
pp. 169-176 ◽  
Author(s):  
T. Candresse ◽  
O. Le Gall ◽  
B. Maisonneuve ◽  
S. German-Retana ◽  
E. Redondo

Seed certification and the use of cultivars containing one of two, probably allelic, recessive genes, mo11 and mo12, are the principal control methods for Lettuce mosaic virus (LMV) in lettuce. Although for a few LMV isolates, mo12 confers resistance with most isolates, the genes mo11 or mo12 confer a tolerance, and virus accumulation is readily detected in mo1-carrying plants. This phenotype complicates evaluation of the resistance status, in particular for mo11, for which there are no viral strains against which a true resistance is expressed. Two green fluorescent protein (GFP)-tagged viruses were constructed, derived from a non-resistance breaking isolate (LMV-0) and from a resistance-breaking isolate (LMV-E). An evaluation of 101 cultivars of known status was carried out with these recombinant viruses. Using the LMV-0-derived recombinant, identification of mo1-carrying cultivars was simple because, contrary to its wild-type parent, systemic movement of LMV-0-GFP was abolished in resistant plants. This assay detected four cases of misidentification of resistance status. In all these cases, further tests confirmed that the prior resistance status information was incorrect, so that a 100% correlation was observed between LMV-0-GFP behavior and the mo1 resistance status. Similarly, the LMV-E-derived recombinant allowed the identification of mo12 lettuce lines because its systemic movement was restricted in mo12 lines but not in susceptible or in mo11 lines. The tagged viruses were able to systemically invade another host, pea, irrespective of its resistance status against another member of the genus Potyvirus, Pea seed-borne mosaic virus. The use of these recombinant viruses could therefore greatly facilitate LMV resistance evaluation and speed up lettuce breeding programs.


Sign in / Sign up

Export Citation Format

Share Document