luciferase expression
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 40)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
pp. 074873042110694
Author(s):  
Ciearra B. Smith ◽  
Vincent van der Vinne ◽  
Eleanor McCartney ◽  
Adam C. Stowie ◽  
Tanya L. Leise ◽  
...  

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein ( Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;Dbp KI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


2021 ◽  
Author(s):  
Ruth Ndathe ◽  
Renee Dale ◽  
Naohiro Kato

The abscisic acid (ABA) signaling pathway is the key defense mechanism against drought stress in plants, yet the connectivity of cellular molecules related to gene expression in response to ABA is little understood. A dynamic model of the core components of the ABA signaling pathway was built using ordinary differential equations to understand the connectivity. Parameter values of protein-protein interactions and enzymatic reactions in the model were implemented from the data obtained by previously conducted experiments. On the other hand, parameter values of gene expression and translation were determined by comparing the kinetics of gene expression in the model to those of ABA-induced RD29A (response to desiccation 29A) in actual plants. Based on the analyses of the optimized model, we hypothesized that the translation rate of PP2C (protein phosphatase type 2C) is downregulated by ABA to increase the ABRE (ABA-responsive element) promoter activity. The hypotheses were preliminarily supported by newly conducted experiments using transgenic Arabidopsis plants that carry a luciferase expression cassette driven by the RD29A promoter (RD29A::LUC). The model suggests that identifying a mechanism that alters PP2C translation rate would be one of the next research frontiers in the ABA signaling pathway.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7066
Author(s):  
Youchao Qi ◽  
Linkai Shi ◽  
Guozhen Duan ◽  
Yonggui Ma ◽  
Peifeng Li

Taurochenodeoxycholic acid (TCDCA) is one of the main components of bile acids (BAs). TCDCA has been reported as a signaling molecule, exerting anti-inflammatory and immunomodulatory functions. However, it is not well known whether those effects are mediated by TGR5. This study aimed to elucidate the interaction between TCDCA and TGR5. To achieve this aim, first, the TGR5 eukaryotic vector was constructed. The expression level of TGR5 in 293T cells was determined by immunofluorescence, real-time quantitative PCR (RT-PCR, qPCR), and Western blot. The luciferase assay, fluorescence microscopy, and enzyme-linked immunosorbent assay (ELISA) were recruited to check the interaction of TCDCA with TGR5. TCDCA treatment in 293T cells resulted in TGR5 internalization coupled with a significant increase in cAMP luciferase expression. Our results demonstrated that TCDCA was able to bind to the TGR5 receptor and activate it. These results provide an excellent potential therapeutic target for TCDCA research. Moreover, these findings also provide theoretical evidence for further TCDCA research.


2021 ◽  
Vol 7 (8) ◽  
pp. 674
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Mengqian Liu ◽  
Caihong Dong

Hydrophobins are a family of small proteins exclusively secreted by fungi, and play a variety of roles in the life cycle. Cmhyd1, one of the hydrophobin class II members in Cordyceps militaris, has been shown to have a high transcript level during fruiting body development. Here, deletion of Cmhyd1 results in reduction in aerial mycelia, conidiation, hydrophobicity and infection ability, and complete inhibition of pigmentation and primordium differentiation. Cmhyd1 plays roles in conidiation and cuticle-bypassing infection by regulating the transcripts of frequency clock protein, Cmfrq, and velvet protein, Cmvosa, as well as primordium formation via the mitogen-activated protein kinase signaling pathway. Cmhyd1 also participates in stress response, including tolerance of mycelia to osmotic and oxidative stresses, and conidia to high or low temperatures. CmAreA, a transcription factor of nitrogen regulatory, is recruited to the promoter of Cmhyd1 and activates the transcription of Cmhyd1 with coactivator CmOTam using electrophoretic mobility shift assays and transient luciferase expression in tobacco. Furthermore, CmHYD1 is proved to regulate the transcription of Cmarea at different developmental stages via a positive feedback loop. These results reveal the diverse roles and regulation of Cmhyd1 in C. militaris, and provide insights into the developmental regulatory mechanism of mushrooms.


2021 ◽  
Vol 22 (16) ◽  
pp. 8538
Author(s):  
Andrés Romero ◽  
Vicente Rojas ◽  
Verónica Delgado ◽  
Francisco Salinas ◽  
Luis F. Larrondo

Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light–oxygen–voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call “HAP-LOV”, displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3462
Author(s):  
Irene del Molino del Barrio ◽  
Annette Meeson ◽  
Katie Cooke ◽  
Mohammed Imad Malki ◽  
Ben Barron-Millar ◽  
...  

Chemokine receptor CCR7 is implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon their binding to both cell-surface heparan sulphate (HS) and to their specific receptors; thus, the role of HS in CCR7-mediated lymph node metastasis was investigated by creating a non-HS binding chemokine CCL21 (mut-CCL21). Mut-CCL21 (Δ103–134) induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of PBMCs (p < 0.001) and 4T1-Luc cells (p < 0.01). Furthermore, the effect of heparin and HS on the chemotactic properties of wild-type (WT) and mut-CCL21 was examined. Interestingly, heparin and HS completely inhibit the chemotaxis mediated by WT-CCL21 at 250 and 500 µg/mL, whereas minimal effect was seen with mut-CCL21. This difference could potentially be attributed to reduced HS binding, as surface plasmon resonance spectroscopy showed that mut-CCL21 did not significantly bind HS compared to WT-CCL21. A murine model was used to assess the potential of mut-CCL21 to prevent lymph node metastasis in vivo. Mice were injected with 4T1-Luc cells in the mammary fat pad and treated daily for a week with 20 µg mut-CCL21. Mice were imaged weekly with IVIS and sacrificed on day 18. Luciferase expression was significantly reduced in lymph nodes from mice that had been treated with mut-CCL21 compared to the control (p = 0.0148), suggesting the potential to target chemokine binding to HS as a therapeutic option.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2228
Author(s):  
Ken Cham-Fai Leung ◽  
Kathy W. Y. Sham ◽  
Josie M. Y. Lai ◽  
Yi-Xiang J. Wang ◽  
Chi-Hin Wong ◽  
...  

Several ternary composites that are based on branched polyethyleneimine (bPEI 25 kDa, polydispersity 2.5, 0.1 or 0.2 ng), citrate-coated ultrasmall superparamagnetic iron oxide nanoparticles (citrate-NPs, 8–10 nm, 0.1, 1.0, or 2.5 µg), and reporter circular plasmid DNA pEGFP-C1 or pRL-CMV (pDNA 0.5 µg) were studied for optimization of the best composite for transfection into glioblastoma U87MG or U138MG cells. The efficiency in terms of citrate-NP and plasmid DNA gene delivery with the ternary composites could be altered by tuning the bPEI/citrate-NP ratios in the polymer composites, which were characterized by Prussian blue staining, in vitro magnetic resonance imaging as well as green fluorescence protein and luciferase expression. Among the composites prepared, 0.2 ng bPEI/0.5 μg pDNA/1.0 µg citrate-NP ternary composite possessed the best cellular uptake efficiency. Composite comprising 0.1 ng bPEI/0.5 μg pDNA/0.1 μg citrate-NP gave the optimal efficiency for the cellular uptake of the two plasmid DNAs to the nucleus. The best working bPEI concentration range should not exceed 0.2 ng/well to achieve a relatively low cytotoxicity.


Author(s):  
Wenke Yang ◽  
Yi Li ◽  
Jun Bai ◽  
Tao You ◽  
Kang Yi ◽  
...  

Hypoxia exposure is responsible for the high incidence of congenital heart defects (CHDs) in high-altitude areas, which is nearly 20 times higher than that in low-altitude areas. However, the genetic factors involved are rarely reported. Sestrin2 (SESN2), a hypoxia stress-inducible gene, protects cardiomyocyte viability under stress; thus, SESN2 polymorphism may be a potential risk factor for CHD. We performed an association study of the SESN2 polymorphisms with CHD risk in two independent groups of the Han Chinese population from two different altitude areas. The allele-specific effects of lead single-nucleotide polymorphisms (SNPs) were assessed by expression quantitative trait locus, electrophoretic mobility shift, and luciferase reporter assays. The molecular mechanism of Sesn2 action against hypoxia-induced cell injury was investigated in embryonic rat-heart-derived H9c2 cells treated with or without hypoxia-mimetic cobalt chloride. SNP rs492554 was significantly associated with reduced CHD risk in the high-altitude population, but not in the low-altitude population. The protective T allele of rs492554 was correlated with higher SESN2 expression and showed a preferential binding affinity to POU2F1. We then identified SNP rs12406992 in strong linkage disequilibrium with rs492554 and mapped it within the binding motif of POU2F1. The T-C haplotype of rs492554-rs12406992 could increase luciferase expression, whereas POU2F1 knockdown effectively suppressed it. Mechanistically, increased Sesn2 protects against oxidative stress and cell apoptosis and maintains cell viability and proliferation. In summary, CHD-associated SNP rs492554 acts as an allele-specific distal enhancer to modulate SESN2 expression via interaction with POU2F1, which might provide new mechanistic insights into CHD pathogenesis.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 660
Author(s):  
Melissa B. Uccellini ◽  
Sadaf Aslam ◽  
Sean T. H. Liu ◽  
Fahmida Alam ◽  
Adolfo García-Sastre

Fc-dependent effector functions are an important determinant of the in vivo potency of therapeutic antibodies. Effector function is determined by the combination of FcRs bound by the antibody and the cell expressing the relevant FcRs, leading to antibody-dependent cellular cytotoxicity (ADCC). A number of ADCC assays have been developed; however, they suffer from limitations in terms of throughput, reproducibility, and in vivo relevance. Existing assays measure NK cell-mediated ADCC activity; however, studies suggest that macrophages mediate the effector function of many antibodies in vivo. Here, we report the development of a macrophage-based ADCC assay that relies on luciferase expression in target cells as a measure of live cell number. In the presence of primary mouse macrophages and specific antibodies, loss of luciferase signal serves as a surrogate for ADCC-dependent killing. We show that the assay functions for a variety of mouse and human isotypes with a model antigen/antibody complex in agreement with the known effector function of the isotypes. We also use this assay to measure the activity of a number of influenza-specific antibodies and show that the assay correlates well with the known in vivo effector functions of these antibodies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Roberto R. Moraes Barros ◽  
Kittisak Thawnashom ◽  
Tyler J. Gibson ◽  
Jennifer S. Armistead ◽  
Ramoncito L. Caleon ◽  
...  

Abstract Background Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites. Methods In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5′ UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey. Results Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method. Conclusion All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.


Sign in / Sign up

Export Citation Format

Share Document