linker domain
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 41)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Joseph Clayton ◽  
Kat Ellis-Guardiola ◽  
Brandon Mahoney ◽  
Jess Soule ◽  
Robert T. Clubb ◽  
...  

Pathogenic Staphylococcus aureus actively acquires iron from human hemoglobin (Hb) using the IsdH surface receptor. Heme extraction is mediated by a tridomain unit within the receptor that contains its second (N2) and third (N3) NEAT domains joined by a helical linker domain. Extraction occurs within a dynamic complex, in which receptors engage each globin chain; the N2 domain tightly binds to Hb, while substantial inter-domain motions within the receptor enable its N3 domain to transiently distort the globin's heme pocket. Using molecular simulations, Markov modeling, and quantitative measurements of heme transfer kinetics, we show that directed inter-domain motions within the receptor play a critical role in the extraction process. The directionality of N3 domain motion and the rate of heme extraction is controlled by amino acids within a short, flexible inter-domain tether that connects the N2 and linker domains. In the wild-type receptor directed motions originating from the tether enable the N3 domain to populate configurations capable of distorting Hb's pocket, whereas mutant receptors containing altered tethers are less able to adopt these conformers and capture heme slowly via indirect processes in which Hb first releases heme into the solvent. Thus, our results show inter-domain motions within the IsdH receptor play a critical role in its ability to extract heme from Hb and highlight the importance of directed motions by the short, unstructured, amino acid sequence connecting the domains in controlling the directionality and magnitude of these functionally important motions.


Author(s):  
Garima Jaipuria ◽  
Divya Shet ◽  
Shahid Malik ◽  
Monalisa Swain ◽  
Hanudatta S. Atreya ◽  
...  

Functional regulation via conformational dynamics is well known in structured proteins, but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 ( hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L- hIGFBP2) retains its intrinsic disorder upon binding IGF-1 but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ju Zou ◽  
Yixiang Zheng ◽  
Yan Huang ◽  
Daolin Tang ◽  
Rui Kang ◽  
...  

The gasdermin (GSDM) family, a novel group of structure-related proteins, consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DNFA5, and PVJK/GSDMF. GSDMs possess a C-terminal repressor domain, cytotoxic N-terminal domain, and flexible linker domain (except for GSDMF). The GSDM-NT domain can be cleaved and released to form large oligomeric pores in the membrane that facilitate pyroptosis. The emerging roles of GSDMs include the regulation of various physiological and pathological processes, such as cell differentiation, coagulation, inflammation, and tumorigenesis. Here, we introduce the basic structure, activation, and expression patterns of GSDMs, summarize their biological and pathological functions, and explore their regulatory mechanisms in health and disease. This review provides a reference for the development of GSDM-targeted drugs to treat various inflammatory and tissue damage-related conditions.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1597
Author(s):  
Lisa Gianesello ◽  
Jennifer Arroyo ◽  
Dorella Del Prete ◽  
Giovanna Priante ◽  
Monica Ceol ◽  
...  

Dent disease is a rare X-linked renal tubulopathy due to CLCN5 and OCRL (DD2) mutations. OCRL mutations also cause Lowe syndrome (LS) involving the eyes, brain and kidney. DD2 is frequently described as a mild form of LS because some patients may present with extra-renal symptoms (ESs). Since DD2 is a rare disease and there are a low number of reported cases, it is still unclear whether it has a clinical picture distinct from LS. We retrospectively analyzed the phenotype and genotype of our cohort of 35 DD2 males and reviewed all published DD2 cases. We analyzed the distribution of mutations along the OCRL gene and evaluated the type and frequency of ES according to the type of mutation and localization in OCRL protein domains. The frequency of patients with at least one ES was 39%. Muscle findings are the most common ES (52%), while ocular findings are less common (11%). Analysis of the distribution of mutations revealed (1) truncating mutations map in the PH and linker domain, while missense mutations map in the 5-phosphatase domain, and only occasionally in the ASH-RhoGAP module; (2) five OCRL mutations cause both DD2 and LS phenotypes; (3) codon 318 is a DD2 mutational hot spot; (4) a correlation was found between the presence of ES and the position of the mutations along OCRL domains. DD2 is distinct from LS. The mutation site and the mutation type largely determine the DD2 phenotype.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lvqin Zheng ◽  
Zhenggao Zheng ◽  
Xiying Li ◽  
Guopeng Wang ◽  
Kun Zhang ◽  
...  

AbstractPhycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ross Bathgate ◽  
Thomas Dschietzig ◽  
Andrew L. Gundlach ◽  
Michelle Halls ◽  
Roger Summers

Relaxin family peptide receptors (RXFP, nomenclature as agreed by the NC-IUPHAR Subcommittee on Relaxin family peptide receptors [18, 81]) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are heterodimeric peptide hormones structurally related to insulin: relaxin-1, relaxin, relaxin-3 (also known as INSL7), insulin-like peptide 3 (INSL3) and INSL5. Species homologues of relaxin have distinct pharmacology and relaxin interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 [184]. relaxin-3 is the ligand for RXFP3 but it also binds to RXFP1 and RXFP4 and has differential affinity for RXFP2 between species [183]. INSL5 is the ligand for RXFP4 but is a weak antagonist of RXFP3. relaxin and INSL3 have multiple complex binding interactions with RXFP1 [189] and RXFP2 [91] which direct the N-terminal LDLa modules of the receptors together with a linker domain to act as a tethered ligand to direct receptor signaling [186]. INSL5 and relaxin-3 interact with their receptors using distinct residues in their B-chains for binding, and activation, respectively [225, 104].


2021 ◽  
Vol 22 (15) ◽  
pp. 8124
Author(s):  
Nathalie Thielen ◽  
Margot Neefjes ◽  
Renske Wiegertjes ◽  
Guus van den Akker ◽  
Elly Vitters ◽  
...  

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


2021 ◽  
Author(s):  
Maria Kowalski-Jahn ◽  
Hannes Schihada ◽  
Ainoleena Turku ◽  
Thomas Huber ◽  
Thomas P. Sakmar ◽  
...  

Frizzleds (FZD1-10) comprise a class of G protein-coupled receptors containing an extracellular cysteine-rich domain (CRD) that binds lipoglycoproteins of the Wingless/Int-1 family (WNTs). Despite the prominent role of the WNT/FZD system in health and disease, our understanding of how WNT binding to the FZD CRD is translated into receptor activation and transmembrane signaling remains limited. Current hypotheses dispute the roles for conformational dynamics and the involvement of the linker domain connecting the CRD with the seven-helical transmembrane core of FZD. To clarify the mechanism of WNT binding to FZD and to elucidate how WNT/FZD complexes achieve signaling pathway specificity, we devised conformational FZD-CRD biosensors based on bioluminescence-resonance-energy-transfer (BRET). Using FZD engineered with N-terminal nanoluciferase and fluorescently-labeled unnatural amino acids in the linker domain and extracellular loop 3, we show that WNT-3A and WNT-5A induce similar CRD conformational rearrangements despite promoting distinct downstream signaling pathways, and that CRD dynamics are not required for WNT/β-catenin signaling. Thus, the novel FZD-CRD biosensors we report provide insights into the stepwise binding, activation and signaling processes in FZDs. The sensor design is broadly applicable to explore fundamental events in signal transduction mediated by other membrane receptors.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 568
Author(s):  
Negin Mirghasemi ◽  
Elena Fanelli ◽  
Salar Jamali ◽  
Mohammed Mehdi Sohani ◽  
Francesca De Luca

Pratylenchus loosi is an important root-lesion nematode that causes damage to tea plantations in Iran and all over the world. The present study reports on the characterization and evolution of three ß-1,4-endoglucanase genes: Pl-eng-2, Pl-eng-3 and Pl-eng-4. The gene structure of Pl-eng-2 was fully determined with the predicted signal peptide and devoid of the linker domain and carbohydrate-binding domain, while Pl-eng-3 and Pl-eng-4 were only partially sequenced. The transcription of Pl-eng-2 was localized in the secretory esophageal glands of all life stages, but it was upregulated in male and female stages. The exon/intron structures of Pl-eng-2, Pl-eng-3 and Pl-eng-4 confirmed that they resulted from gene duplication followed by sequence and gene structure diversification with loss of the linker domain and carbohydrate-binding domain during evolution. A phylogenetic analysis further confirmed that nematode endoglucanases resulted from the horizontal gene transfer of a bacterial gene, as Pl-eng-3 showed sister relationships with the CelB cellulase of Bacillus subtilis. Silencing Pl-eng-2 by in vitro RNA interference produced a 60% decrease of the transcript level. The reproductive ability of silenced P. loosi showed a 35% reduction of eggs and larval stages compared to untreated nematodes, suggesting that this gene is involved in the early steps of invasion.


Author(s):  
Simon Vezina-Dawod ◽  
Alicia J. Angelbello ◽  
Shruti Choudhary ◽  
Kye Won Wang ◽  
Ilyas Yildirim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document