scholarly journals Cucumber mosaic virus-Plant Interactions: Identification of 3a Protein Sequences Affecting Infectivity, Cell-to-Cell Movement, and Long-distance Movement

2001 ◽  
Vol 14 (3) ◽  
pp. 378-385 ◽  
Author(s):  
Qiubo Li ◽  
Ki Hyun Ryu ◽  
Peter Palukaitis

Mutants of the Cucumber mosaic virus (CMV) movement protein (MP) were generated and analyzed for their effects on virus movement and pathogenicity in vivo. Similar to the wild-type MP, mutants M1, M2, and M3, promoted virus movement in eight plant species. Mutant M3 showed some differences in pathogenicity in one host species. Mutant M8 showed some host-specific alterations in movement in two hypersensitive hosts of CMV. Mutant M9 showed altered pathogenicity on three hosts and was temperature sensitive for long-distance movement, demonstrating that cell-to-cell and long-distance movement are distinct movement functions for CMV. Four mutants (M4, M5, M6, and M7) were debilitated from movement in all hosts tested. Mutants M4, M5, and M6 could be complemented in trans by the wild-type MP expressed transgenically, although not by each other or by mutant M9 (at the restrictive temperature). Mutant M7 showed an inability to be complemented in trans. From these mutants, different aspects of the CMV movement process could be defined and specific roles for particular sequence domains assigned. The broader implications of these functions are discussed.

1999 ◽  
Vol 12 (7) ◽  
pp. 628-632 ◽  
Author(s):  
Sek-Man Wong ◽  
Sharon Swee-Chin Thio ◽  
Michael H. Shintaku ◽  
Peter Palukaitis

The M strain of cucumber mosaic virus (CMV) does not infect squash plants systemically and moves very slowly in inoculated cotyledons. Systemic infection and an increase in the rate of local movement were observed when amino acids 129 or 214 of the M-CMV capsid protein (CP) were altered to those present in the Fny strain of CMV. While the opposite alterations to the CP of Fny-CMV inhibited systemic infection of squash, they did not show the same effects on the rates of both cell-to-cell and long-distance movement. However, the ability of CMV to infect squash systemically was affected by the rate of cell-to-cell movement.


2007 ◽  
Vol 20 (6) ◽  
pp. 659-670 ◽  
Author(s):  
Andrew J. Love ◽  
Valérie Laval ◽  
Chiara Geri ◽  
Janet Laird ◽  
A. Deri Tomos ◽  
...  

We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.


2011 ◽  
Vol 156 (12) ◽  
pp. 2279-2283 ◽  
Author(s):  
Katalin Salánki ◽  
László Kiss ◽  
Ákos Gellért ◽  
Ervin Balázs

2002 ◽  
Vol 15 (9) ◽  
pp. 947-955 ◽  
Author(s):  
Bu-Jun Shi ◽  
Peter Palukaitis ◽  
Robert H. Symons

The approximately 12-kDa 2b protein, encoded by all cucumoviruses, had been shown to play an important role in viral long-distance movement, hypervirulence, and suppression of post-transcriptional gene silencing. The role of the 2b gene in the hypervirulence of Cucumber mosaic virus (CMV) and whether hypervirulence was linked to movement were analyzed using a hybrid virus (CMV-qw), generated by replacing the 2b gene in a subgroup II strain, Q-CMV, with the 2b gene from a subgroup IA strain, WAII-CMV. CMV-qw was more virulent than Q-CMV or WAII-CMV on most of the host plant species tested. Northern blot and nucleotide sequence analyses demonstrated that CMV-qw was stably maintained during the course of infection and upon passage. Kinetic studies revealed that the hypervirulence induced by the hybrid virus was associated with neither increased viral RNA accumulation nor more rapid viral movement per se, suggesting that other functions of the 2b protein are important in determining the hypervirulence.


2002 ◽  
Vol 83 (12) ◽  
pp. 3173-3178 ◽  
Author(s):  
Seung Kook Choi ◽  
Ju Yeon Yoon ◽  
Ki Hyun Ryu ◽  
Jang Kyung Choi ◽  
Peter Palukaitis ◽  
...  

Zucchini squash (Cucurbita pepo) is a systemic host for most strains of the cucumovirus Cucumber mosaic virus (CMV), although the long-distance movement of the M strain of CMV (M-CMV) is inhibited in some cultivars. However, co-infection of zucchini plants with M-CMV and the potyvirus Zucchini yellow mosaic virus strain A (ZYMV-A) allowed M-CMV to move systemically, as demonstrated by tissue-print analysis. These doubly infected plants exhibited severe synergism in pathology. Infection of zucchini squash by M-CMV and an attenuated strain of ZYMV (ZYMV-AG) showed a milder synergy in pathology, in which ZYMV-AG also facilitated the long-distance movement of M-CMV similar to that promoted by ZYMV-A. Variation in the extent of synergy in pathology by the two strains of ZYMV did not correlate with differences in levels of accumulation of either virus. Thus, the extent of synergy in pathology is at least in part independent of the resistance-neutralizing function of the potyvirus.


2002 ◽  
Vol 15 (8) ◽  
pp. 753-763 ◽  
Author(s):  
Ezequiel Balmori-Melian ◽  
Robin M. MacDiarmid ◽  
David L. Beck ◽  
Richard C. Gardner ◽  
Richard L. S. Forster

Transgenic Nicotiana benthamiana plants expressing an untranslatable version of the coat protein (CP) gene from the Tamarillo mosaic virus (TaMV) were either resistant to TaMV infection or recovered from infection. These phenotypes were the result of a post-transcriptional gene silencing (PTGS) mechanism that targeted TaMV-CP sequences for degradation. The TaMV-CP sequences were degraded when present in the wild-type TaMV potyvirus, in transgene mRNA, or in chimeric viral vectors based on White clover mosaic virus. The more efficiently targeted region was mapped to a 134-nt segment. Differences were observed in the efficiency of targeting during cell-to-cell and long-distance movement of the chimeric viruses. However, the TaMV-CP sequences do not appear to be targeted for degradation when delivered by biolistics.


1998 ◽  
Vol 88 (10) ◽  
pp. 1101-1107 ◽  
Author(s):  
Amit Gal-On ◽  
Dalia Wolf ◽  
Yongzeng Wang ◽  
Jean-Emmanuelle Faure ◽  
Meir Pilowsky ◽  
...  

Tomato breeding lines were transformed with a defective replicase gene from RNA 2 of cucumber mosaic virus (CMV). A total of 63 transformants from five tomato genotypes were evaluated for resistance to CMV strains. The responses of R1 transgenic offspring fit into three categories: fully susceptible lines (44%), fully resistant lines (8%), and an intermediate-type mixture of susceptible and resistant seedlings in variable proportions (48%). Further characterization of the response of two highly resistant lines was performed by mechanical inoculation, aphid transmission, or grafting experiments. No virus was detected in noninoculated leaves from these lines, although a low level of virus accumulated initially in the inoculated leaf. The homozygous R2 plants and further generations that were evaluated (up to R5) showed resistance to the Fny-CMV strain, two Israeli isolates tentatively classified as subgroup IA, and K-CMV (a representative of subgroup IB). These lines were partially resistant to LS-CMV (a representative of subgroup II) when a high-virus-titer inoculum was used. Expression of the viral transgene was verified in these lines; however, the expected translation product was not detectable. In grafting experiments, we demonstrated that CMV virions were blocked in their ability to move from infected rootstocks of nontransformed tomato or tobacco into the transgenic scions. Interestingly, virions could not move through a transgenic intersection into the upper scion. These results provide an additional indication that replicase-mediated resistance affects long-distance movement.


1999 ◽  
Vol 12 (11) ◽  
pp. 985-993 ◽  
Author(s):  
Tomas Canto ◽  
Peter Palukaitis

The 3a movement protein of cucumber mosaic virus (CMV), fused to the jellyfish green fluorescent protein (3a-GFP) generated surface punctate aggregates as well as tubules protruding from infected tobacco and Nicotiana benthamiana protoplasts. Fluorescent tubules also appeared on the surface of protoplasts prepared from transgenic tobacco plants expressing 3a-GFP, indicating that the 3a protein is the only viral component required for the formation of the tubules. CMV with a mutation in the gene encoding the 3a protein, M8 CMV, could infect tobacco systemically, but tubules were not detected protruding from infected protoplasts when the mutated 3a protein was fused to the GFP [(M8)3a-GFP]. This indicates that the ability of the 3a protein to generate tubules in the surface of protoplasts is not a function required for the spread of CMV in tobacco. On the other hand, the (M8)3a-GFP did not traffic through plasmodesmata interconnecting tobacco epidermal cells, in contrast to the wild-type 3a-GFP. This suggests that there may be a correlation between the ability of the 3a protein to assemble tubules in protoplasts and its ability to promote movement within certain tissues.


2002 ◽  
Vol 104 (4) ◽  
pp. 586-591 ◽  
Author(s):  
C. Caranta ◽  
S. Pflieger ◽  
V. Lefebvre ◽  
A. M. Daubèze ◽  
A. Thabuis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document