scholarly journals In Spite of Induced Multiple Defense Responses, Tomato Plants Infected with Cucumber mosaic virus and D Satellite RNA Succumb to Systemic Necrosis

2003 ◽  
Vol 16 (6) ◽  
pp. 467-476 ◽  
Author(s):  
Ping Xu ◽  
Elison B. Blancaflor ◽  
Marilyn J. Roossinck

Cucumber mosaic virus (CMV) D satellite RNA (satRNA) attenuates the symptoms induced by CMV in most plants, but causes leaf epinasty and systemic necrosis in tomato plants, where programmed cell death (PCD) is involved. However, our understanding of the cellular and molecular responses to the infection of CMV D satRNA that result in this lethal disease remains limited. In this article, we show for the first time, by histochemical and molecular analysis, that multiple defense responses are specifically induced in CMV and D satRNA (CMV/D satRNA)-infected tomato plants but not in mock-inoculated or CMV-infected plants. These responses include callose deposition and hydrogen peroxide accumulation in infected plants. Furthermore, the transcription of several tomato defense-related genes (e.g., PR-1a1, PR-1b1, PR-2, and PR-10) were activated, and the expression of tomato PR-5 and some abiotic and biotic stress-responsive genes (e.g., catalase II and tomato analogs of Arabidopsis AtBI-1 and tobacco hsr203j) are enhanced. The activation and increase in expression of these genes is correlated with the appearance of leaf epinasty and the development of systemic necrosis in infected tomato plants, while increased expression of the hsr203j analog precedes the development of any disease symptoms. The spatial and temporal expression patterns of these genes as detected by RNA in situ hybridization point to the involvement of a complex developmental program that accompanies disease development resulting from CMV/D satRNA infection.

2019 ◽  
Vol 234-235 ◽  
pp. 9-17 ◽  
Author(s):  
Nunzia Rendina ◽  
Maria Nuzzaci ◽  
Antonio Scopa ◽  
Ann Cuypers ◽  
Adriano Sofo

2004 ◽  
Vol 17 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Fabrizio Cillo ◽  
Mariella M. Finetti-Sialer ◽  
Maria A. Papanice ◽  
Donato Gallitelli

Transgenic tomato (Lycopersicon esculentum Mill. cv. UC82) plants expressing a benign variant of Cucumber mosaic virus satellite RNA (CMV Tfn-satRNA) were generated. The transformed plants did not produce symptoms when challenged with a satRNA-free strain of CMV (CMV-FL). The same plant lines initially were susceptible to necrosis elicited by a CMV strain supporting a necrogenic variant of satRNA (CMV-77), but a phenotype of total recovery from the necrosis was observed in the newly developing leaves. The features of the observed resistance were analyzed and are consistent with two different mechanisms of resistance. In transgenic plants inoculated with CMV-FL strain, the symptomless phenotype was correlated to the down-regulation of CMV by Tfn-satRNA, amplified from the transgene transcripts, as the first resistance mechanism. On the other hand, the delayed resistance to CMV-77 in transgenic tomato lines was mediated by a degradation process that targets satRNAs in a sequence-specific manner. Evidence is provided for a correlation between a reduced accumulation level of transgenic messenger Tfn-satRNA, the accumulation of small (approximately 23 nucleotides) RNAs with sequence homology to satRNAs, the progressively reduced accumulation of 77-satRNA in infected tissues, and the transition in infected plants from diseased to healthy. Thus, events leading to the degradation of satRNA sequences indicate a role for RNA silencing as the second mechanism determining resistance of transgenic tomato lines.


1990 ◽  
Vol 170 (2) ◽  
pp. 548-555 ◽  
Author(s):  
P.B. McGarvey ◽  
J.M. Kaper ◽  
M.J. Avila-Rincon ◽  
L. Peña ◽  
J.R. Diaz-Ruiz

1994 ◽  
Vol 119 (3) ◽  
pp. 642-647 ◽  
Author(s):  
P.B. McGarvey ◽  
M.S. Montasser ◽  
J.M. Kaper

Transgenic tomato plants (Lycopersicon esculentum Mill.) expressing cucumber mosaic virus (CMV) satellite RNA fused to a gene for β-glucuronidase were produced using Agrobacterium-mediated transformation. The R1 progeny of self-crossed R0 plants were challenge-inoculated with virion or RNA preparations of CMV or tomato aspermy virus (TAV). The transgenic plants challenged with CMV-1 showed mild disease symptoms in the first 2 weeks postchallenge followed by a decrease in symptoms, resulting in little difference between the transgenic and uninfected control group by the fourth week. Enzyme-linked immunosorbent assay results showed about a 10-fold decrease in virus accumulation in the transgenic plants compared to controls. Tolerance was evident only in plants that contained the recombinant insert and produced mature unit-length satellite RNA after CMV infection. Plants challenged with TAV showed no significant tolerance to virus-induced symptoms.


1992 ◽  
Vol 83-83 (6-7) ◽  
pp. 679-683 ◽  
Author(s):  
Y. Saito ◽  
T. Komari ◽  
C. Masuta1 ◽  
Y. Hayashi ◽  
T. Kumashiro ◽  
...  

2015 ◽  
Vol 28 (6) ◽  
pp. 675-688 ◽  
Author(s):  
Masayoshi Hashimoto ◽  
Ken Komatsu ◽  
Ryo Iwai ◽  
Takuya Keima ◽  
Kensaku Maejima ◽  
...  

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix–induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death–inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


Sign in / Sign up

Export Citation Format

Share Document