rna in situ hybridization
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 93)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Sumana Kunmongkolwut ◽  
Chatchawan Amornkarnjanawat ◽  
Ekarat Phattarataratip

AbstractEpstein–Barr virus (EBV)-positive mucocutaneous ulcer (EBVMCU) is a unique clinicopathologic entity of lymphoproliferative disorder, occurring in immunosuppressed patients. Due to its rarity, EBVMCU may be under-recognized by clinicians as well as pathologists. In addition, its clinical and histopathologic features overlap with other benign and malignant conditions, making a diagnosis challenging. This report presents an unusual case of multifocal oral EBVMCUs in a 52-year-old female patient with rheumatoid arthritis, receiving the combination of methotrexate and leflunomide for 5 years. The patient presented with persistent multiple large painful ulcers involving her palate and gingiva for 6 months. The histopathologic examination revealed extensive ulceration with diffuse polymorphic inflammatory infiltrate admixed with scattered atypical lymphoid cells showing occasional Hodgkin and Reed/Sternberg-like cell features. These atypical cells showed immunoreactivity for CD20, CD30 and MUM1/IRF4. EBV-encoded small RNA in situ hybridization was positive, validating the presence of EBV-infected cells. Two months after discontinuation of both immunosuppressive medications, oral lesions gradually regressed. At 9-month follow-up, no evidence of relapsing oral EBVMCU has been observed. The multifocal presentation of EBVMCU is rare and could be resulted from the overwhelming immune suppression by long-term use of dual immunosuppressants. Its diagnosis requires comprehensive correlation of patient history, clinical findings, histopathologic, and immunophenotypic features. The ability of EBVMCU to regress following removal of immunosuppressive causes is in drastic contrast to a variety of its potential clinical and histopathologic mimics. Therefore, accurate diagnosis is crucial to avoid unnecessary patient management and achieve optimal patient outcomes.


2021 ◽  
Vol 23 (1) ◽  
pp. 107
Author(s):  
Matthias Vanneste ◽  
Marie Mulier ◽  
Ana Cristina Nogueira Freitas ◽  
Nele Van Ranst ◽  
Axelle Kerstens ◽  
...  

The cation channel TRPM3 is activated by heat and the neurosteroid pregnenolone sulfate. TRPM3 is expressed on sensory neurons innervating the skin, where together with TRPV1 and TRPA1, it functions as one of three redundant sensors of acute heat. Moreover, functional upregulation of TRPM3 during inflammation contributes to heat hyperalgesia. The role of TRPM3 in sensory neurons innervating internal organs such as the bladder is currently unclear. Here, using retrograde labeling and single-molecule fluorescent RNA in situ hybridization, we demonstrate expression of mRNA encoding TRPM3 in a large subset of dorsal root ganglion (DRG) neurons innervating the mouse bladder, and confirm TRPM3 channel functionality in these neurons using Fura-2-based calcium imaging. After induction of cystitis by injection of cyclophosphamide, we observed a robust increase of the functional responses to agonists of TRPM3, TRPV1, and TRPA1 in bladder-innervating DRG neurons. Cystometry and voided spot analysis in control and cyclophosphamide-treated animals did not reveal differences between wild type and TRPM3-deficient mice, indicating that TRPM3 is not critical for normal voiding. We conclude that TRPM3 is functionally expressed in a large proportion of sensory bladder afferent, but its role in bladder sensation remains to be established.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Nicholas M. Negretti ◽  
Erin J. Plosa ◽  
John T. Benjamin ◽  
Bryce A. Schuler ◽  
A. Christian Habermann ◽  
...  

ABSTRACT Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages – wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


2021 ◽  
Vol 2 (4) ◽  
pp. 100879
Author(s):  
Ji Pang ◽  
Nancy Thomas ◽  
Dai Tsuchiya ◽  
Tari Parmely ◽  
Deyue Yan ◽  
...  

2021 ◽  
Author(s):  
Srivathsan Adivarahan ◽  
A.M.S.Kalhara Abeykoon ◽  
Daniel Zenklusen

Intron removal from pre-mRNAs is a critical step in the processing of RNA polymerase II transcripts, required to create translation competent mRNAs. In humans, introns account for large portions of the pre-mRNA, with intronic sequences representing about 95% of most pre-mRNA. Intron length varies considerably; introns can be as short as a few to hundreds of thousands of nucleotides in length. How nascent long intronic RNA is organized during transcription to facilitate the communication between 5′ and 3′ splice-sites required for spliceosome assembly however is still poorly understood. Here, we use single-molecule fluorescent RNA in situ hybridization (smFISH) to investigate the spatial organization of co- and post-transcriptional long introns in cells. Using two long introns within the POLA1 pre-mRNA as a model, we show that introns are packaged into compact assemblies, and when fully transcribed, are organized in a looped conformation with their ends in proximity. This organization is observed for nascent and nucleoplasmic pre-mRNAs and requires spliceosome assembly, as disruption of U2 snRNP binding results in introns with separated 5′ and 3′ ends. Moreover, interrogating the spatial organization of partially transcribed co-transcriptional POLA1 intron 35 indicates that the 5′ splice site is maintained proximal to the 3′ splice site during transcription, supporting a model that 5′ splice site tethering to the elongating polymerase might contribute to spliceosome assembly at long introns. Together, our study reveals details of intron and pre-mRNA organization in cells and provides a tool to investigate mechanisms of splicing for long introns.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2024
Author(s):  
Taro Ikegami ◽  
Norimoto Kise ◽  
Hidetoshi Kinjyo ◽  
Shunsuke Kondo ◽  
Mikio Suzuki ◽  
...  

Laryngeal papilloma (LP), which is associated with infection by human papillomavirus (HPV)-6 or -11, displays aggressive growth. The precise molecular mechanism underlying the tumorigenesis of LP has yet to be uncovered. Building on our earlier research into HPV-6, in this study, the viral gene expression of HPV-11 was investigated by quantitative PCR and DNA/RNA in situ hybridization. Additionally, newly developed antibodies against the E4 protein of HPV-6 and HPV-11 were evaluated by immunohistochemistry. The average viral load of HPV-11 in LP was 1.95 ± 0.66 × 105 copies/ng DNA, and 88% of HPV mRNA expression was found to be E4, E5a, and E5b mRNAs. According to RNA in situ hybridization, E4 and E5b mRNAs were expressed from the middle to upper part of the epithelium. E4 immunohistochemistry revealed a wide positive reaction in the upper cell layer in line with E4 mRNA expression. Other head and neck lesions with HPV-11 infection also showed a positive reaction in E4 immunohistochemistry. The distribution pattern of HPV DNA, viral mRNA, and E4 protein in LP with HPV-11 infection was quite similar to that of HPV-6. Therefore, it might be possible to apply these E4-specific antibodies in other functional studies as well as clinical applications, including targeted molecular therapies in patients with HPV-6 and HPV-11 infection.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Jesus Jimenez ◽  
Pan Ma ◽  
Jing Jing ◽  
Andrea Bredemeyer ◽  
Inessa Lokshina ◽  
...  

Immune checkpoint inhibitors have revolutionized cancer treatment but have been associated with severe adverse cardiac events including myocarditis. CD40 agonist (CD40ag) antibodies are immune regulators that have emerged as promising candidates with remarkable efficacy across tumors including those thought to be resistant to established ICIs. To investigate CD40 signaling and its potential for adverse cardiac events, C57BL/6J, CCR2-GFP, and CCR2-knockout mice were injected with CD40ag or isotype antibodies for 7 days. Flow cytometry showed a specific increase in CCR2 + macrophages that was independent of monocyte recruitment. There was no change in neutrophil recruitment and only a modest increase in dendritic cells was evident. We also observed a significant expansion of CD4 and CD8 T-cells that displayed an effector memory phenotype. Bulk cardiac tissue gene expression analysis (Figure A) revealed that CD40 activation upregulates multiple inflammatory cytokines (Ifng, Tnf, Il-12β) and chemokines (Ccl3, Ccl5, Ccl7, Cxcl9, Cxcl10), which are regulated by interferon gamma and coordinate the activation of APCs and T-cells. Finally, RNA in situ hybridization (Figure B-C) demonstrated increased levels of Cxcl9 (red) expression in cells consistent with CCR2 + (white) macrophages when comparing isotype control to treatment with CD40ag. These findings reveal that CD40 activation results in a robust expansion of CCR2 + macrophages and activation of T-cells within the heart, initiating a feed forward loop of activation that is mediated by interferon gamma and generates inflammatory cytotoxic mediators that may lead to myocardial injury.


2021 ◽  
Vol 9 (3) ◽  
pp. 33
Author(s):  
David A. Schwartz ◽  
Mattia Bugatti ◽  
Amerigo Santoro ◽  
Fabio Facchetti

A subset of placentas from pregnant women having the SARS-CoV-2 infection have been found to be infected with the coronavirus using molecular pathology methods including immunohistochemistry and RNA in situ hybridization. These infected placentas can demonstrate several unusual findings which occur together—chronic histiocytic intervillositis, trophoblast necrosis and positive staining of the syncytiotrophoblast for SARS-CoV-2. They frequently also have increased fibrin deposition, which can be massive in some cases. Syncytiotrophoblast is the most frequent fetal-derived cell type to be positive for SARS-CoV-2. It has recently been shown that in a small number of infected placentas, villous stromal macrophages, termed Hofbauer cells, and villous capillary endothelial cells can also stain positive for SARS-CoV-2. This report describes a placenta from a pregnant woman with SARS-CoV-2 that had chronic histiocytic intervillositis, trophoblast necrosis, increased fibrin deposition and positive staining of the syncytiotrophoblast for SARS-CoV-2. In addition, molecular pathology testing including RNAscope and immunohistochemistry for SARS-CoV-2 and double-staining immunohistochemistry using antibodies to E-cadherin and GATA3 revealed that cytotrophoblast cells stained intensely for SARS-CoV-2. All of the cytotrophoblast cells that demonstrated positive staining for SARS-CoV-2 were in direct physical contact with overlying syncytiotrophoblast that also stained positive for the virus. The pattern of cytotrophoblast staining for SARS-CoV-2 was patchy, and there were chorionic villi having diffuse positive staining of the syncytiotrophoblast for SARS-CoV-2, but without staining of cytotrophoblast. This first detailed description of cytotrophoblast involvement by SARS-CoV-2 adds another fetal cell type from infected placentas that demonstrate viral staining.


Sign in / Sign up

Export Citation Format

Share Document