First Report of Septoria Leaf Spot of Pistachio in Arizona.

Plant Disease ◽  
1989 ◽  
Vol 73 (9) ◽  
pp. 775 ◽  
Author(s):  
D. J. Young
Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 282-282
Author(s):  
K. Vrandečić ◽  
J. Ćosić ◽  
D. Jurković ◽  
I. Stanković ◽  
A. Vučurović ◽  
...  

Lavandula × intermedia Emeric ex Loiseleur, commonly known as lavandin, is an aromatic and medicinal perennial shrub widely and traditionally grown in Croatia. The lavandin essential oil is primarily used in perfumery and cosmetic industries, but also possesses anti-inflammatory, sedative, and antibacterial properties. In June 2012, severe foliar and stem symptoms were observed on approximately 40% of plants growing in a commercial lavandin crop in the locality of Banovo Brdo, Republic of Croatia. Initial symptoms on lower leaves included numerous, small, oval to irregular, grayish brown lesions with a slightly darker brown margin of necrotic tissue. Further development of the disease resulted in yellowing and necrosis of the infected leaves followed by premature defoliation. Similar necrotic oval-shaped lesions were observed on stems as well. The lesions contained numerous, dark, sub-globose pycnidia that were immersed in the necrotic tissue or partly erumpent. Small pieces of infected internal tissues were superficially disinfected with 50% commercial bleach (4% NaOCl) and placed on potato dextrose agar (PDA). A total of 10 isolates from leaves and five from stems of lavandin formed a slow-growing, dark, circular colonies with raised center that produced pycnidia at 23°C, under 12 h of fluorescent light per day. All 15 recovered isolates formed uniform hyaline, elongate, straight or slightly curved conidia with 3 to 4 septa, with average dimensions of 17.5 to 35 × 1.5 to 2.5 μm. Based on the morphological characteristics, the pathogen was identified as Septoria lavandulae Desm., the causal agent of lavender leaf spot (1,2). Pathogenicity of one selected isolate (428-12) was tested by spraying 10 lavandin seedlings (8 weeks old) with a conidial suspension (106 conidia/ml) harvested from a 4-week-old monoconidial culture on PDA. Five lavandin seedlings, sprayed with sterile distilled water, were used as negative control. After 5 to 7 days, leaf spot symptoms identical to those observed on the source plants developed on all inoculated seedlings and the pathogen was successfully re-isolated. No symptoms were observed on any of the control plants. Morphological identification was confirmed by amplification and sequencing of the internal transcribed spacer (ITS) region of rDNA (3). Total DNA was extracted directly from fungal mycelium with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and PCR amplification performed with primers ITS1F/ITS4. Sequence analysis of ITS region revealed at least 99% identity between the isolate 428-12 (GenBank Accession No. KF373078) and isolates of many Septoria species; however, no information was available for S. lavandulae. To our knowledge, this is the first report of Septoria leaf spot of lavandin caused by S. lavandulae in Croatia. Since the cultivation area of lavandin plants has been increasing in many continental parts of Croatia, especially in Slavonia and Baranja counties, the presence of a new and potentially harmful disease may represent a serious constraint for lavandin production and further monitoring is needed. References: (1) T. V. Andrianova and D. W. Minter. IMI Descriptions of Fungi and Bacteria, 142, Sheet 1416, 1999. (2) R. Bounaurio et al. Petria 6:183, 1996. (3) G. J. M. Verkley et al. Mycologia 96:558, 2004.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 762-762
Author(s):  
J. M. French ◽  
R. J. Heerema ◽  
E. A. Gordon ◽  
N. P. Goldberg

In September of 2008, a Septoria sp., the causal agent of Septoria leaf spot of pistachio (Pistacia vera L.) was isolated from leaf lesions in an orchard in southern New Mexico. Tree fruit and nut crops including pistachios are becoming an increasingly important part of New Mexico's agricultural industry with total cash receipts of $103 million in 2007 (3). This preliminary positive for Septoria prompted a survey of pistachio-growing counties in the state. The surveyed orchards accounted for approximately 30% of the pistachio acreage in New Mexico. Results indicated that all five pistachio-growing counties had orchards infected with a Septoria sp. Isolates of Septoria from leaf lesions were identified as Septoria pistaciarum Caracc. based on the following symptoms and morphological characteristics of the fungus: leaf lesions were usually circular, 0.5 to 3 mm in diameter, and contained many pycnidia per lesion; pycnidia were dark, ostiolate, and measured 101 to 255 × 69 to 133 μm; and conidia were hyaline, filiform, contained 3 to 9 septa, and measured 3 to 4 × 60 to 149 μm. Most orchards were only mildly affected. In severe cases, hundreds of leaf lesions were present on diseased leaves; large sections of the leaves turned tan and some trees defoliated prematurely. This widespread occurrence of Septoria leaf spot in New Mexico in 2008 suggests that the disease had already been present in the state for several years. A higher average rainfall in the summer of 2008 provided excellent conditions for disease development. Because of the high amounts of inoculum currently present in New Mexico orchards, Septoria leaf spot may emerge as a recurring disease problem for pistachio producers. This disease was first reported in the United States in Texas in 1971 and was also reported in Arizona in 1989 (1,2,4). To our knowledge, this is the first report of Septoria leaf spot of pistachio in New Mexico. References: (1) A. Chitzandis. Ann. Inst. Phytopathol. Benaki 10:29, 1956. (2) J. L. Maas et al. Plant Dis. Rep. 55:72, 1971. (3) New Mexico Agricultural Statistics, Department of Agriculture, 2007. (4) D. J. Young and T. Michailides. Plant Dis. 73:775, 1989.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 204-204
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Cornus sericea (synonym C. stolonifera), family Cornaceae, is becoming widely used in Italy as ground cover in parks and gardens. In spring 2001, severe outbreaks of a previously unknown disease were observed in several gardens located in northern Italy (Biella Province). Infected leaves displayed small, circular, angular, or irregular necrotic lesions measuring 1 to 3 mm in diameter. Lesions were olivaceous to dark brown with a distinct reddish-to-black margin and surrounded by a chlorotic halo. Lesions eventually coalesced. Under favorable conditions, infected leaves become heavily spotted, dulling their appearance; severe infections resulted in premature defoliation. Pycnidia occurred on diseased leaves, and a fungus identified as Septoria cornicola (1) was consistently isolated on potato dextrose agar (PDA). Dark mycelium grew slowly on PDA and produced abundant pycnidia and conidia. Conidia were holoblastic, hyaline, 2 to 6 septate, 22 to 48 µm (average 35) × 2.2 to 3.6 µm (average 2.5). Pathogenicity tests were performed by inoculating leaves of healthy plants of C. sericea (cv. Flaviramea) with a conidial suspension (1 × 106 CFU/ml). Noninoculated plants served as controls. Plants were covered for 72 h with plastic bags and maintained in a growth chamber at 20°C. The first lesions developed on leaves of inoculated plants after 15 days. From such lesions, S. cornicola was consistently reisolated. No symptoms occurred on control plants. The presence of S. cornicola on C. sericea cv. Flaviramea has been reported in the United States (2) and was observed in 1905 in northeastern Italy on Cornus sanguinea (1), but to our knowledge, this is the first report of septoria leaf spot on C. sericea in Italy. References: (1) D. F. Farr. Mycologia, 83:611, 1991. (2) D. Neely and D. S. Nolte. J. Arboric. 15:263, 1989.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Juan Fan ◽  
Hong Bo Qiu ◽  
Hai Jiang Long ◽  
Wei Zhao ◽  
Xiao Long Xiang ◽  
...  
Keyword(s):  

Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 397-401 ◽  
Author(s):  
I. Roloff ◽  
H. Scherm ◽  
M. W. van Iersel

Leaf spots caused by fungal pathogens or abiotic factors can be prevalent on southern blueberries after harvest during the summer and fall, yet little is known about how they affect physiological processes that determine yield potential for the following year. In this study, we measured CO2 assimilation and leaf conductance on field-grown blueberry plants affected by Septoria leaf spot (caused by Septoria albopunctata) or by edema-like abiotic leaf blotching. Net assimilation rate (NAR) on healthy leaves varied between 6.9 and 12.4 μmol m-2 s-1 across cultivars and measurement dates. Infection by S. albopunctata had a significant negative effect on photosynthesis, with NAR decreasing exponentially as disease severity increased (R2 ≥0.726, P < 0.0001). NAR was reduced by approximately one-half at 20% disease severity, and values approached zero for leaves with >50% necrotic leaf area. There was a positive, linear correlation between NAR and leaf conductance (R2 ≥ 0.622, P < 0.0001), suggesting that the disease may have reduced photosynthesis via decreased CO2 diffusion into affected leaves. Estimates of virtual lesion size associated with infection by S. albopunctata ranged from 2.8 to 3.1, indicating that the leaf area in which photosynthesis was impaired was about three times as large as the area covered by necrosis. For leaves afflicted by edema-like damage, there also was a significant negative relationship between NAR and affected leaf area, but the scatter about the regression was more pronounced than in the NAR-disease severity relationships for S. albopunctata (R2 = 0.548, P < 0.0001). No significant correlation was observed between leaf conductance and affected area on these leaves (P = 0.145), and the virtual lesion size associated with abiotic damage was significantly smaller than that caused by S. albopunctata. Adequate carbohydrate supply during the fall is critical for optimal flower bud set in blueberry; therefore, these results document the potential for marked yield losses due to biotic and abiotic leaf spots.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Sign in / Sign up

Export Citation Format

Share Document