scholarly journals Temperature Sensitivity and Efficacy of Wheat streak mosaic virus Resistance Derived from CO960293 Wheat

Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 623-628 ◽  
Author(s):  
D. L. Seifers ◽  
T. J. Martin ◽  
T. L. Harvey ◽  
S. Haber ◽  
S. D. Haley

Wheat yields often are limited by infection by Wheat streak mosaic virus (WSMV). Host plant resistance to WSMV can reduce losses. This study was conducted to characterize a new source of temperature-sensitive resistance found in CO960293 wheat. The source of the temperature-sensitive resistance in CO960293 is unknown. Parental and other wheat lines were tested for WSMV resistance using 51 WSMV isolates under different temperatures to determine the stability of the resistance, and yield trials were conducted in the field for 3 years. All parental wheat lines became infected by WSMV at all temperatures and were infective in back assay to ‘Tomahawk’ wheat. No WSMV isolate defeated the resistance of CO960293 at 18°C. Yield of CO960293 in field trials was reduced in only 1 of 3 years. Our data demonstrate that this wheat line can be a valuable source of resistance to WSMV in wheat programs, particularly in areas where temperatures are cool following planting in the fall.

Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1029-1033 ◽  
Author(s):  
D. L. Seifers ◽  
T. J. Martin ◽  
T. L. Harvey ◽  
S. Haber

Wheat streak mosaic virus (WSMV) infection reduces seed yield and quality in wheat. These losses can be alleviated significantly by exploiting genetic host plant resistance. A new source of temperature-sensitive resistance to WSMV, KS03HW12, and its parental lines (KS97HW29/ KS97HW131//KS96HW100-5) were evaluated in both greenhouse and field conditions. Parental wheat lines were exposed to WSMV pressure under different temperatures in growth chambers to determine the stability of the resistance, and 2 years of field yield trials were conducted to confirm effectiveness. To determine the effectiveness of its resistance against a spectrum of isolates, KS03HW12 was tested against six different WSMV isolates of different geographic origins. Among the three pedigree parents, only one, KS97HW29, was resistant. The parental lines of KS97HW29 are not available for testing; therefore, the presumed origin of the resistance could not be further confirmed. None of the six tested WSMV isolates systemically infected KS03HW12 at 18°C. Yield of KS03HW12 in field tests was not different from healthy controls. Thus, the elite winter wheat KS03HW12 appears to be a stable and effective source of temperature-sensitive resistance to WSMV and should be useful for wheat breeding programs.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 983-987 ◽  
Author(s):  
D. L. Seifers ◽  
T. J. Martin ◽  
S. Haber

Temperature-sensitive resistance (TSR) that can protect against losses to Wheat streak mosaic virus (WSMV) has been described in elite wheat germplasm. A TSR identified in the advanced breeding line CO960333 and its derivative KS06HW79 was examined in growth-chamber tests conducted under constant temperature regimes of 18, 21, and 24°C against an array of WSMV isolates. At 18°C, all tested isolates systemically infected the pedigree parents, while the progeny line CO960333 remained free of symptoms; at 24°C, all lines were susceptible. At the intermediate temperature of 21°C, the TSR of KS06HW79 was effective in contrast to the TSRs of KS03HW12 and ‘RonL’. In field trials conducted in 2011 and 2012, the TSR expressed in KS06HW79 conferred complete protection against yield losses from inoculation with the Sidney 81 isolate of WSMV, while the TSR of RonL conferred similar protection in 2012 but allowed small losses in 2011. The resistance expressed by KS06HW79 is likely not due to the Wsm1 gene because it did not contain the tightly linked J15 sequence-characterized amplified region (SCAR) DNA marker. These findings suggest that KS06HW79 could be an additional TSR source of value to wheat-breeding programs seeking to control losses from WSMV.


Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Huangjun Lu ◽  
Jacob Price ◽  
Ravindra Devkota ◽  
Charlie Rush ◽  
Jackie Rudd

Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dallas L. Seifers ◽  
Steve Haber ◽  
T. J. Martin ◽  
Guorong Zhang

Expressing temperature-sensitive resistance (TSR) protects wheat against yield losses from infection with Wheat streak mosaic virus (WSMV). In examining how 2,429 wheat accessions from the National Small Grains Collection responded to inoculation with the Sid81 isolate of WSMV, 20 candidate TSR sources were discovered. To differentiate their relative effectiveness, accession responses over 21 days to inoculation with GH95, Sid81, and PV57 virus isolates in regimes of 18 and 20°C were observed. At 18°C, all 20 candidate TSR sources were uniformly or nearly uniformly asymptomatic 21 days after inoculation with the PV57 isolate, resistance indistinguishable from resistant checks KS96HW10-3 and RonL. By contrast, the Sid81 isolate induced symptoms in low but significant proportions of plants of two candidates, and the GH95 isolate in high proportions for four candidates and low but significant proportions for two others. In the more stringent 20°C regime, the uniform or near-uniform induction of symptoms in response to inoculation with GH95 failed to differentiate among the 20 candidate TSR sources and two resistant checks, while PV57 and Sid81 identified several candidates that performed similarly to KS96HW10-3 and significantly better than RonL. By identifying new sources of resistance, this study contributes to the control of WSMV.


2016 ◽  
Vol 147 (3) ◽  
pp. 709-712 ◽  
Author(s):  
Tadele T. Kumssa ◽  
Donglan Zhao ◽  
Guihua Bai ◽  
Guorong Zhang

Euphytica ◽  
2014 ◽  
Vol 198 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Jessica L. Shoup Rupp ◽  
Zachary G. Simon ◽  
Beth Gillett-Walker ◽  
John P. Fellers

2021 ◽  
Vol 22 (19) ◽  
pp. 10218
Author(s):  
Lidiya Mishchenko ◽  
Taras Nazarov ◽  
Alina Dunich ◽  
Ivan Mishchenko ◽  
Olga Ryshchakova ◽  
...  

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and β-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and β-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 525-531 ◽  
Author(s):  
Jacob A. Price ◽  
Angela R. Simmons ◽  
Arash Rashed ◽  
Fekede Workneh ◽  
Charles M. Rush

Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant ‘Mace’ and ‘RonL are commercially available and contain the wsm1 and wsm2 genes, respectively, for resistance to WSMV. However, the resistance in these cultivars is temperature sensitive, ineffective above 27°C, and does not protect against the other common wheat viruses. The majority of winter wheat in the Southern Great Plains is planted in early fall as a dual-purpose crop for both grazing and grain production. Early planting exposes wheat plants to warmer temperatures above the threshold for effective resistance. Studies were conducted to determine whether the resistance found in these cultivars would give infected plants the ability to recover as temperatures cooled to a range conducive to effective genetic resistance. RonL, Mace, ‘TAM 111’, ‘TAM 112’, and ‘Karl 92’ wheat were infested with WSMV viruliferous mites at temperatures above the resistance threshold. After the initial 4-week infection period, plants were subjected to progressively cooler temperatures during the winter months, well below the resistance threshold. Throughout the study, plant samples were taken to quantify virus titer and mite populations. Resistant RonL and Mace, which became severely infected during the initial infection period, were not able to recover even when temperatures dropped below the resistance threshold. However, TAM 112 showed resistance to WSMV but, more importantly, it also showed resistance to the wheat curl mite, because the mite population in this cultivar was significantly lower than on all other cultivars. The results of this study are significant in that they represent the first evidence of quantitative resistance to both WSMV and the wheat curl mite in a single wheat cultivar. Resistance to the wheat curl mite has potential to reduce losses to all mite-vectored virus diseases of wheat and not just WSMV.


Sign in / Sign up

Export Citation Format

Share Document