Comparative metabolomics of temperature sensitive resistance to wheat streak mosaic virus (WSMV) in resistant and susceptible wheat cultivars

2019 ◽  
Vol 237 ◽  
pp. 30-42 ◽  
Author(s):  
F. Farahbakhsh ◽  
H. Hamzehzarghani ◽  
A. Massah ◽  
M. Tortosa ◽  
M. Yassaie ◽  
...  
2016 ◽  
Vol 29 (9) ◽  
pp. 724-738 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Everlyne N. Wosula ◽  
Melissa Bartels ◽  
Gary L. Hein ◽  
Robert A. Graybosch

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein–tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dallas L. Seifers ◽  
Steve Haber ◽  
T. J. Martin ◽  
Guorong Zhang

Expressing temperature-sensitive resistance (TSR) protects wheat against yield losses from infection with Wheat streak mosaic virus (WSMV). In examining how 2,429 wheat accessions from the National Small Grains Collection responded to inoculation with the Sid81 isolate of WSMV, 20 candidate TSR sources were discovered. To differentiate their relative effectiveness, accession responses over 21 days to inoculation with GH95, Sid81, and PV57 virus isolates in regimes of 18 and 20°C were observed. At 18°C, all 20 candidate TSR sources were uniformly or nearly uniformly asymptomatic 21 days after inoculation with the PV57 isolate, resistance indistinguishable from resistant checks KS96HW10-3 and RonL. By contrast, the Sid81 isolate induced symptoms in low but significant proportions of plants of two candidates, and the GH95 isolate in high proportions for four candidates and low but significant proportions for two others. In the more stringent 20°C regime, the uniform or near-uniform induction of symptoms in response to inoculation with GH95 failed to differentiate among the 20 candidate TSR sources and two resistant checks, while PV57 and Sid81 identified several candidates that performed similarly to KS96HW10-3 and significantly better than RonL. By identifying new sources of resistance, this study contributes to the control of WSMV.


Author(s):  
Uta McKelvy ◽  
Monica Brelsford ◽  
Jamie Sherman ◽  
Mary Burrows

Wheat streak mosaic virus (WSMV) causes sporadic epidemics in Montana which can threaten profitability of the state’s small grains production. One challenge for WSMV management in Montana is that most commercially available wheat and barley cultivars are susceptible to WSMV or their performance under WSMV pressure is unknown. In a three-year field study from 2017 to 2019 winter wheat, spring wheat, and barley cultivars were evaluated for their susceptibility to WSMV and yield performance under WSMV pressure. Plants were mechanically inoculated and WSMV incidence was assessed using DAS-ELISA. There was effective resistance to WSMV in breeding line CO12D922, which had consistently low WSMV incidence, highlighting promising efforts in the development of WSMV-resistant winter wheat cultivars. Moderate WSMV incidence and minor yield losses were observed from WSMV infection of commercial winter wheat ‘Brawl CL Plus’ and MSU breeding line MTV1681. Spring wheat cultivars in this study had high WSMV incidence of up to 100 % in ‘Duclair,’ ‘Egan,’ and ‘McNeal.’ High WSMV incidence was associated with severe yield losses as high as 85 % for Duclair and ‘WB9879CL’ in 2019, demonstrating a high degree of susceptibility to WSMV inoculation. Barley cultivars had considerably lower WSMV incidence compared to spring and winter wheat. Grain yield response to WSMV inoculation was variable between barley cultivars. The study provided an experimental basis for cultivar recommendations for high WSMV pressure environments and identified breeding lines and cultivars with potential resistance traits of interest to breeding programs that aim to develop WSMV-resistant cultivars.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 983-987 ◽  
Author(s):  
D. L. Seifers ◽  
T. J. Martin ◽  
S. Haber

Temperature-sensitive resistance (TSR) that can protect against losses to Wheat streak mosaic virus (WSMV) has been described in elite wheat germplasm. A TSR identified in the advanced breeding line CO960333 and its derivative KS06HW79 was examined in growth-chamber tests conducted under constant temperature regimes of 18, 21, and 24°C against an array of WSMV isolates. At 18°C, all tested isolates systemically infected the pedigree parents, while the progeny line CO960333 remained free of symptoms; at 24°C, all lines were susceptible. At the intermediate temperature of 21°C, the TSR of KS06HW79 was effective in contrast to the TSRs of KS03HW12 and ‘RonL’. In field trials conducted in 2011 and 2012, the TSR expressed in KS06HW79 conferred complete protection against yield losses from inoculation with the Sidney 81 isolate of WSMV, while the TSR of RonL conferred similar protection in 2012 but allowed small losses in 2011. The resistance expressed by KS06HW79 is likely not due to the Wsm1 gene because it did not contain the tightly linked J15 sequence-characterized amplified region (SCAR) DNA marker. These findings suggest that KS06HW79 could be an additional TSR source of value to wheat-breeding programs seeking to control losses from WSMV.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1029-1033 ◽  
Author(s):  
D. L. Seifers ◽  
T. J. Martin ◽  
T. L. Harvey ◽  
S. Haber

Wheat streak mosaic virus (WSMV) infection reduces seed yield and quality in wheat. These losses can be alleviated significantly by exploiting genetic host plant resistance. A new source of temperature-sensitive resistance to WSMV, KS03HW12, and its parental lines (KS97HW29/ KS97HW131//KS96HW100-5) were evaluated in both greenhouse and field conditions. Parental wheat lines were exposed to WSMV pressure under different temperatures in growth chambers to determine the stability of the resistance, and 2 years of field yield trials were conducted to confirm effectiveness. To determine the effectiveness of its resistance against a spectrum of isolates, KS03HW12 was tested against six different WSMV isolates of different geographic origins. Among the three pedigree parents, only one, KS97HW29, was resistant. The parental lines of KS97HW29 are not available for testing; therefore, the presumed origin of the resistance could not be further confirmed. None of the six tested WSMV isolates systemically infected KS03HW12 at 18°C. Yield of KS03HW12 in field tests was not different from healthy controls. Thus, the elite winter wheat KS03HW12 appears to be a stable and effective source of temperature-sensitive resistance to WSMV and should be useful for wheat breeding programs.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 525-531 ◽  
Author(s):  
Jacob A. Price ◽  
Angela R. Simmons ◽  
Arash Rashed ◽  
Fekede Workneh ◽  
Charles M. Rush

Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant ‘Mace’ and ‘RonL are commercially available and contain the wsm1 and wsm2 genes, respectively, for resistance to WSMV. However, the resistance in these cultivars is temperature sensitive, ineffective above 27°C, and does not protect against the other common wheat viruses. The majority of winter wheat in the Southern Great Plains is planted in early fall as a dual-purpose crop for both grazing and grain production. Early planting exposes wheat plants to warmer temperatures above the threshold for effective resistance. Studies were conducted to determine whether the resistance found in these cultivars would give infected plants the ability to recover as temperatures cooled to a range conducive to effective genetic resistance. RonL, Mace, ‘TAM 111’, ‘TAM 112’, and ‘Karl 92’ wheat were infested with WSMV viruliferous mites at temperatures above the resistance threshold. After the initial 4-week infection period, plants were subjected to progressively cooler temperatures during the winter months, well below the resistance threshold. Throughout the study, plant samples were taken to quantify virus titer and mite populations. Resistant RonL and Mace, which became severely infected during the initial infection period, were not able to recover even when temperatures dropped below the resistance threshold. However, TAM 112 showed resistance to WSMV but, more importantly, it also showed resistance to the wheat curl mite, because the mite population in this cultivar was significantly lower than on all other cultivars. The results of this study are significant in that they represent the first evidence of quantitative resistance to both WSMV and the wheat curl mite in a single wheat cultivar. Resistance to the wheat curl mite has potential to reduce losses to all mite-vectored virus diseases of wheat and not just WSMV.


Sign in / Sign up

Export Citation Format

Share Document