scholarly journals First Report of Southern Blight of Iresine herbstii Caused by Sclerotium rolfsii in Taiwan

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1692-1692
Author(s):  
C. H. Fu ◽  
Y. P. Huang ◽  
F. Y. Lin

Widely cultivated commercially, Iresine herbstii Hook is a potted herbaceous plant popular for its foliage, which varies from a dark red to brownish maroon. In the summer of 2010, a sudden wilt of I. herbstii plants was observed at a recreational farm in Taipei City in northern Taiwan. The initial symptoms were water-soaked lesions that became soft and then rotted. Necrotic areas on the stems were covered with fans of white mycelium as well as abundant spherical, brown sclerotia. A fungus was isolated from both infected tissue and sclerotia and maintained on potato dextrose agar (PDA) plates incubated at 25°C without light. Colonies were white and cottony, often forming mycelial fans. Pure cultures were prepared by transferring single hyphal tips to PDA. Sclerotia formed after 7 days. Sclerotia were initially white becoming dark brown with age and were 0.8 to 1 mm in diameter at maturity. These are typical features of Sclerotium rolfsii. Koch's postulates were performed by inoculating five healthy, potted I. herbstii plants with 10 fresh sclerotia placed on the soil surface around the base of each plant. In a second test, five healthy potted plants were inoculated with a single 10-mm-diameter mycelial agar plug placed at the stem base of each plant. Five noninoculated plants served as controls. All plants were incubated in a growth chamber at 25 to 35°C. Basal stem rot and wilt developed within 4 days on plants inoculated with sclerotia or mycelial plugs. All plants were dead by 7 days after inoculation whereas the controls remained healthy. The fungus was reisolated from the symptomatic tissue and produced sclerotia and mycelium consistent with S. rolfsii. To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA region of the causal fungus was amplified using the primers ITS4 and ITS5 (3) and sequenced. The resulting sequence of 687 bp was uploaded in NCBI (Accession No. JN543691.1). The sequence was 98% similar to sequences of Athelia rolfsii (anamoprh S. rolfsii). This disease has been observed on many species of plants (1, 2). To our knowledge, this is the first report of I. herbstii caused by S. rolfsii in Taiwan or any other part of the world. References: (1) T. T. Chang. Bull. Taiwan For. Res. Inst. 9:191, 1994. (2) Y. N. Wang et al. J. Exp. For. Nat. Taiwan Univ. 20:45, 2006. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1822-1822
Author(s):  
C. H. Fu ◽  
Y. P. Huang ◽  
F. Y. Lin

Mexican petunia (Ruellia brittoniana) is an herbaceous flowering perennial with strikingly colored flowers, widely cultivated commercially as a potted plant and a popular garden plant. In July of 2010, root and stem rot that caused death was observed on Mexican petunia at the flower nursery of the Council of Agriculture & Chiayi County in Taiwan. Plants had rotted and girdled stem bases. Necrotic areas were covered with fans of white mycelium as well as abundant spherical sclerotia. A fungus was isolated from infected tissue and sclerotia, and maintained on potato dextrose agar (PDA) plates incubated at 25°C without light. Colonies were white, cottony, often forming fans; pure cultures were prepared by transferring hyphal tips to PDA. Sclerotia formed after 10 days, initially white becoming dark brown with age, and 0.5 to 0.6 mm in diameter. To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA region of the causal fungus was amplified using the primers ITS4 and ITS5 (2) and sequenced. The resulting sequence of 687 bp was uploaded in NCBI. The sequence was 98% similar to sequences of Athelia rolfsii (Sclerotium rolfsii) in NCBI (Accession No. JN543691.1). Koch's postulates were performed using two inoculation techniques. The soil near the base of healthy Mexican petunia plants (four plants per pot) were exposed to recently matured sclerotia (10 sclerotia per plant) developed from pure fungal cultures or 10-mm-diameter agar plugs of mycelium (one plug per plant). Noninoculated plants, in a separate pot, were used as a control. All plants were incubated in a growth chamber at 28 to 33°C. Disease symptoms occurred on all inoculated plants by 5 to 7 days and included yellowing of leaves, basal stem rot, and wilt. Ten days after inoculation, inoculated plants were dead whereas control plants remained healthy. The pathogenicity test was repeated twice with similar results and S. rolfsii was reisolated from infected plants in each test. The pathogen has been reported to cause substantial loss of Mexican petunia in Louisiana (1). The disease is becoming more common in Taiwan and could cause losses in Mexican petunia production. To our knowledge, this is the first report of disease on Mexican petunia caused by S. rolfsii in Taiwan. References: (1) G. E. Holcomb. Plant Dis. 88:770, 2004. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, 1990.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 71-71
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

The production of potted ornamental plants is very important in the Albenga Region of northern Italy, where plants are grown for export to central and northern Europe. During fall 2000 and spring 2001, sudden wilt of tussock bellflower (Campanula carpatica Jacq.) and butterfly flower (Schizanthus × wisetonensis Hort.) was observed on potted plants in a commercial greenhouse. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of the lower leaves. As stem necrosis progressed, infected plants growing in a peat, bark compost, and clay mixture (70-20-10) wilted and died. Necrotic tissues were covered with whitish mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from symptomatic stem pieces of both plants disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with streptomycin sulphate at 100 ppm. Pathogenicity of three isolates obtained from each crop was confirmed by inoculating 45- to 60-day-old C. carpatica and Schizanthus × wisetonensis plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelia and sclerotia of each isolate was placed on the soil surface around the base of previously artificially wounded or nonwounded plants. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of stem blight of C. carpatica and Schizanthus × wisetonensis caused by S. sclerotiorum in Italy. The disease was previously observed on C. carpatica in Great Britain (2) and on Schizanthus sp. in the United States (1). References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. Rees. Welsh J. Agric. 1:188, 1925.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1044-1044
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Thymus × citriodorus is well known for the citrus aroma released by its leaves and is grown as a potted plant in northern Italy. This species is widely used in gardens and landscapes and for culinary purposes. In the Liguria Region alone, 1.5 million plants are grown. In the winter of 2002, extensive chlorosis was observed on potted plants of Thymus × citriodorus cv. Silver Queen grown outdoors on commercial farms near Albenga. Initial symptoms included stem necrosis at the soil level and darkening of leaves. As stem necrosis progressed, infected plants wilted and died. Wilt, characterized by the presence of soft and watery tissues, occurred within a few days on young plants. Necrotic tissues became covered with whitish mycelium that produced dark sclerotia. Sclerotinia sclerotiorum (Lib.) de Bary (1) was consistently recovered from infected stem pieces of Thymus × citriodorus. The diseased stem tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 ppm of streptomycin sulfate. Sclerotia produced on PDA were ellipsoid and measured 5.2 to 4.4 × 2.1 to 1.5 mm (average 3.5 × 3.0 mm). Pathogenicity of three isolates obtained from infected plants was confirmed by inoculating 30-day-old plants grown in 14-cm-diameter pots in a screenhouse. Inoculum that consisted of wheat kernels infested with mycelium and sclerotia of each isolate was placed on the soil surface around the base of each of 10 plants. Noninoculated plants served as controls. The inoculation trial was repeated once. All plants were kept at temperatures ranging between 5 and 26°C and watered as needed. Inoculated plants developed symptoms of leaf yellowing within 13 days, soon followed by the appearance of white mycelium, and eventually wilted. Control plants remained symptomless. White mycelium and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of white mold of Thymus × citriodorus caused by S. sclerotiorum. The economic importance of this disease for the crop can be considered low. Reference: (1) N. F. Buchwald. Den. Kgl. Veterin.er-og Landbohojskoles Aarsskrift, 1949.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 769-769 ◽  
Author(s):  
S. T. Koike

Jerusalem artichoke or sunchoke (Helianthus tuberosus) is a specialty vegetable that is grown commercially in California. The fleshy tubers are harvested and used as a fresh salad ingredient or cooked vegetable. During 2003, field plantings of Jerusalem artichoke in coastal California (Santa Cruz County) showed symptoms of an unfamiliar disease. Initial symptoms consisted of wilting of new shoots and leaves followed by browning and collapse of all foliage. Crown and lower stem tissues turned tan to brown. In advanced stages of the disease, crown and stem tissues were colonized internally and externally by white, cottony mycelium. Tan, spherical sclerotia that measured approximately 1 mm in diameter formed on the surfaces of the affected crowns and stems. Mycelia and sclerotia also grew on the soil adjacent to infected plants. Isolations from symptomatic crowns, mycelia, and sclerotia produced colonies that were identified as Sclerotium rolfsii. Pathogenicity was tested using two methods that included sclerotial inocula collected from five isolates grown on potato dextrose agar plates. With the first method, sclerotia of each isolate were applied to sets of tubers (10 tubers per isolate) prior to planting tubers into a soilless, peat moss-based medium in pots. With the second method, 3-week-old potted plants were inoculated by placing sclerotia of each isolate adjacent to stem tissue that was 3 cm below the surface of the soilless medium. Noninoculated controls were included for both methods. All plants were incubated in a greenhouse at 21 to 24°C. For the first method, by the third week after planting, 10 to 40% of plants did not emerge because the tubers were rotted and decayed. For the plants that did emerge, wilting of foliage and browning of crown and stem tissue occurred approximately 6 weeks after planting and by 10 weeks, all plants were diseased. S. rolfsii was reisolated from all necrotic tuber, crown, and stem tissues. For the second method, disease symptoms and signs of the pathogen occurred 5 weeks after inoculation and by week 10, 75% of test plants were symptomatic. S. rolfsii was again reisolated from all necrotic tuber, crown, and stem tissues. Symptoms were not observed on any of the noninoculated plants. To my knowledge, this is the first report of southern blight of Jerusalem artichoke in California. This disease has been reported on Jerusalem artichoke in several southern U.S. states (1,2). The two inoculation methods demonstrated that the pathogen could infect propagation organs (tubers) and also emergent stems of this host. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) S. M. McCarter and S. J. Kays. Plant Dis. 68:299, 1984.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 636-636 ◽  
Author(s):  
A. Pane ◽  
S. L. Cosentino ◽  
V. Copani ◽  
S. O. Cacciola

Hemp (Cannabis sativa L.), family Cannabaceae, is an annual herbaceous plant that is 1.5 to 4.0 m tall and native to the Caucasus Region, northern India, and Iran. It is cultivated in warm to temperate regions worldwide for its fiber, oil, and psychoactive substances. In Europe, commercial plantings have decreased from 52,872 ha in 1989 to 18,716 ha in 2005. Recently however, cultivation of hemp as a natural fiber species has been encouraged by European Union policy (2). During the summer of 2003, patches of dead plants were observed in test plots of 12 monoecious and dioecious hemp cultivars (Beniko, Epsylon 68, Felina 34, Ferimon, Fedora 17, Futura 75, Bialobrzeskie, Dioica 88, Fibranova, Tiborszallasi, Lovrin, and Carmagnola) in an experimental field near Catania (eastern Sicily) previously planted to artichoke (Cynara scolymus L.). Plots were irrigated with a drip irrigation system. Symptoms were first detected in July with day/night temperatures between 35 and 26°C. Infected plants showed a dark brown-to-tan discoloration of the stem near the soil line. As disease progressed, the rot extended down to the crown and taproot, foliage became yellow, and the entire plant eventually collapsed. An extensive white, cottony mycelium and numerous spherical tan-to-dark brown sclerotia (0.5 to 4.0 mm in diameter) developed externally on infected tissues and soil. As much as 60% of the plants were affected in a single plot. Monoecious cultivars that had been planted earlier escaped the disease. Isolations from diseased tissues were performed by plating symptomatic tissues previously disinfected for 1 min in 1% NaOCl and rinsed in sterile water on acidified potato dextrose agar (pH 4.5). Isolations consistently yielded a fungus whose characters corresponded to Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) Tu & Kimbrough). Pathogenicity of two isolates obtained from infected plants was confirmed by inoculating 120-day-old hemp plants grown in individual pots. Twenty plants for each of the above listed cultivars (10 plants for each isolate) were inoculated by applying toothpick tips (5 mm) colonized by S. rolfsii to the lower part of the stem. Ten noninoculated plants served as controls. Plants were kept in a greenhouse with temperatures between 26 and 32°C and 95% relative humidity. High soil moisture was maintained with frequent watering. All inoculated plants showed blight and basal stem rot after 2 weeks, irrespective of the cultivar. By the third week, plants began to dry up and mycelium and sclerotia developed on the crown. Noninoculated controls remained symptomless. S. rolfsii was reisolated from inoculated plants. Although S. rolfsii has been reported on hemp in India since the 1930s (3), to our knowledge, this is the first report of southern blight caused by this fungus on C. sativa in Sicily and southern Italy. Residues of artichoke, a very susceptible host of S. rolfsii (1), might have been the source of inoculum for this outbreak on hemp. Most likely, high summer temperatures and overirrigation exacerbated the disease severity. References: (1) C. Cariddi and R. Lops. La Difesa delle Piante 19(1):27, 1996. (2) S. L. Cosentino et al. Agroindustria 2:137, 2003. (3) G. P. Hector. Ann. Rep. Dep. Agric. Bengal 35, 1931.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1172-1172 ◽  
Author(s):  
W. Tang ◽  
Y. Z. Zhu ◽  
H. Q. He ◽  
S. Qiang

Canadian goldenrod (Solidago canadensis L., Asteraceae) is a rhizomatous perennial plant native to North America that has invaded eastern China and continues to spread northward and westward. It is quite common on field borders, roadsides, and in undeveloped areas, posing a serious threat to native ecosystems and their biodiversity. During the late summers of 2007 and 2008, wilted Canadian goldenrod plants were occasionally found in invasive populations in the suburb of Nanjing city. Wilted plants were transplanted and maintained in a greenhouse at Nanjing Agricultural University. A white mass of fungal hyphae, which grew on the soil surface around the stem of the symptomatic S. canadesis plants and eventually covered the stem, was observed. Initially, the base of the stem became yellow, turned brown, and the light brown discoloration extended up the stem to a height of 3 to 7 cm. The leaves then collapsed, starting from the top until the entire plant wilted. The fungus produced numerous, small, roundish sclerotia of uniform size (0.7 to 2.0 mm in diameter), which were white at first and then became brown to dark brown. The fungus grew into the stems and downward into the rhizome area, but no sclerotia were detected inside the stem or root. Diseased tissue with sclerotia was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 mg/liter of streptomycin sulfate. On the basis of sclerotia morphology and the presence of clamp connections at hyphal septa, the fungus was identified as Sclerotium rolfsii. Pathogenicity of the isolate was confirmed by inoculating 1-year-old S. canadensis plants (average 1.5 m high) grown in pots. The inoculum consisted of cottonseed hulls infested with mycelium and sclerotia of the pathogen and was placed on the soil surface around the base of each unwounded plant. Noninoculated plants served as controls. The pathogenicity test was conducted twice. After inoculation, the plants were maintained at high humidity and 30°C for 3 days and then transferred to a greenhouse. All inoculated plants developed symptoms of southern blight. Inoculated plants developed symptoms of wilting 5 to 7 days after inoculation and were completely wilted within 15 to 20 days. Symptoms of wilting were soon followed by the appearance of white-to-light brown sclerotia on the collar region. Control plants remained symptomless and Sclerotium rolfsii was reisolated from inoculated plants. To our knowledge, this is the first report of southern blight of Canadian goldenrod caused by Sclerotium rolfsii in China.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1198-1198
Author(s):  
C. Y. Chen ◽  
C. H. Fu ◽  
W. W. Hsiao ◽  
E. J. Sun

Silvery messerschmidia, Messerschmidia argentea (L.) Johnston, of the Boraginaceae, is indigenous to Taiwan and grown as an ornamental, for windbreaks, or as a shade tree. During the summer of 2005, a sudden wilt of 1-year-old plants was observed in a nursery in central Taiwan. Initial symptoms included stem necrosis at the collar, leaf yellowing, and tan discoloration of leaves. As stem necrosis progressed, infected plants wilted, defoliated, and died. Necrotic tissues were covered with whitish mycelium with clamp connections that formed reddish brown spherical (1 to 2.2 mm in diameter) sclerotia. A fungus was consistently recovered from the interface of diseased and healthy stem tissue, disinfested for 1 min in 0.5% NaOCl, and plated on Difco (Sparks, MD) potato dextrose agar (PDA) amended with 100 ppm of ampicillin. Pure cultures were prepared by transferring single hyphal tips to PDA, and Sclerotium rolfsii (Sacc.) was identified (1). Pathogenicity of two S. rolfsii isolates was confirmed by inoculating 3-month-old silvery messerschmidia seedlings grown in pots. Inoculum consisted of a single agar disk of a 7-day-old culture used per pot or a single sclerotium produced in 10 days on PDA and added per pot. Both the mycelium on the 0.5-cm-diameter agar plug and the sclerotium touched the base of the plant stem. Four plants were inoculated with mycelia, four with sclerotia, and four were noninoculated controls. All plants were kept in a growth chamber at 25 to 35°C with relative humidity of more than 95%. Initially, the basal stems were covered by whitish mycelia growth with a fanlike pattern from the inoculum, and brown, water-soaked necrotic lesions developed near the soil line. Inoculated plants developed symptoms within 4 days, wilted gradually in 7 days, and all were eventually killed in 11 days. Plants inoculated with sclerotia developed disease at a slower rate and control plants remained symptomless. Sclerotia developed on diseased tissues and S. rolfsii was reisolated. This disease has been observed on many species of plants (2), but to our knowledge, this is the first report of southern blight of silvery messerschmidia seedlings caused by S. rolfsii in Taiwan. References: (1) R. K. Jones and D. M. Benson, eds. Diseases of Woody Ornamentals and Trees in Nurseries. The American Phytopathological Society, St. Paul, MN, 2001. (2) Y. P. Tsai, ed. List of Plant Diseases in Taiwan. The Plant Protection Society of the Republic of China and The Phytopathological Society of the Republic of China, 1991.


Plant Disease ◽  
2005 ◽  
Vol 89 (9) ◽  
pp. 1016-1016
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Rosmarinus officinalis L. ‘Prostratus’ is an evergreen shrub that is native to the Mediterranean Region in southern Europe and grown as a potted plant in Italy. This cultivar is widely used in gardens and landscapes. During the winter of 2002, extensive chlorosis was observed on 8-month-old potted plants of R. officinalis L. ‘Prostratus’ grown outdoors in commercial farms near Albenga in northern Italy. Initial symptoms included stem necrosis at the soil level and darkening of leaves. As stem necrosis progressed, infected plants wilted and died. Wilt, characterized by the presence of soft and watery tissues, occurred within a few days on young plants. The disease infected 15% of the plants. Necrotic tissues became covered with a whitish mycelium that produced dark sclerotia. The diseased stem tissue was surface sterilized for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 ppm of streptomycin sulfate. Sclerotinia sclerotiorum (1) was consistently recovered from infected stem pieces. Sclerotia observed on infected plants measured 0.30 to 3.33 × 1.00 to 4.23 mm (average 1.31 × 1.88 mm). Sclerotia produced on PDA measured 0.09 to 3.08 × 0.38 to 4.05 mm (average 1.94 × 2.43 mm). Pathogenicity of three isolates obtained from infected plants and used in mixture was confirmed by inoculating 60-day-old plants grown in 14-cm-diameter pots in a glasshouse. Inoculum (wheat kernels infested with mycelium and sclerotia) for each isolate was placed on the soil surface around the base of each plant. Pathogenicity tests included three inoculated plants grown in separate pots per isolate. Three noninoculated plants grown in three pots served as controls. The inoculation trial was conducted twice. All plants were kept at temperatures ranging between 8 and 34°C (average 18°C) and watered as needed. Plants were covered with plastic for 96 h after inoculation to increase the moisture level. All inoculated plants developed symptoms of leaf yellowing within 30 days, soon followed by the appearance of white mycelium and sclerotia, and eventual wilt. Control plants remained symptomless. S. sclerotiorum was reisolated from the stems of inoculated plants. To our knowledge, this is the first report of white mold of R. officinalis L. ‘Prostratus’ in Italy and in Europe. S. sclerotiorum has been previously reported on R. officinalis in India (2) and the United States (3). The economic importance of this disease for the crop in Italy can be considered low at the moment. References: (1) N. F. Buchwald. Den. Kgl. Veterin.er-og Landbohojskoles Aarsskrift, 32:75, 1949. (2) L. Mohan. Indian Phytopathol. 47:443, 1994. (3) M. L. Putnam. Plant Pathol. 53:252, 2004.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1048-1048
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Jerusalem cherry (Solanum pseudocapsicum) has recently become popular as a potted ornamental plant in Italy. During the summer of 1999, a sudden wilt of 60-day-old plants was observed in the Albenga region (Northern Italy), an area of intensive floriculture. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of leaves. As stem necrosis progressed, infected plants wilted and died. Necrotic tissues were covered with whitish mycelium that differentiated into reddish brown, spherical (1 to 2 mm diameter) sclerotia. Sclerotium rolfsii was consistently recovered from the surface of symptomatic stem sections that were disinfected for 1 min in 1% NaOCl and then plated on potato-dextrose agar (PDA) amended with 100 ppm streptomycin sulfate. Pathogenicity of three S. rolfsii isolates was confirmed by inoculating 90-day-old S. pseudocapsicum plants grown in pots. Inoculum consisted of mycelium and sclerotia of the pathogen placed on the soil surface around the base of each plant. Noninoculated plants served as controls. All plants were kept in a growth chamber at 18 to 28°C and RH > 85%. Inoculated plants developed symptoms within 7 days, while control plants remained symptomless. Sclerotia developed on infected tissues and S. rolfsii was reisolated from symptomatic tissues. The disease has been observed in the United States (1), but this is the first report of stem blight of S. pseudocapsicum caused by S. rolfsii in Europe. Reference: (1) S. A. Alfieri, Jr., K. R. Langdon, C. Wehlburg, and J. W. Kimbrough, J. W. Index Plant Dis. Florida Bull. 11:215, 1984.


Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 310-310
Author(s):  
G. Polizzi ◽  
A. Vitale ◽  
G. Parlavecchio

Laurustinus (Viburnum tinus L.), native to the Mediterranean Region, is an evergreen shrub commonly used as a specimen shrub or small tree or used in border plantings. During August 2003, a blight occurred on 2-year-old-plants of laurustinus growing in pots in a nursery in eastern Sicily (Italy). Disease incidence ranged from 2 to 5% across the field. Symptoms included 3 to 4 cm long lesions and the development of white mycelial strands and brown, 1.0 to 1.8 mm, nearly spherical sclerotia on the crown of plants at the soil line that are typical of Sclerotium rolfsii Sacc. The foliage of infected plants wilted, followed by a sudden collapse of the plant. The fungus was consistently isolated on acidified potato dextrose agar (PDA) (pH 4.5) by plating symptomatic tissues that were surface disinfested (1.2% NaOCl) for 1 min. and rinsed in sterile water. Pathogenicity tests were performed by sprinkling 50 sclerotia, obtained from infected oat kernels (2), on the soil surface around the collar of each of 10 healthy, potted 1-year-old plants of laurustinus. Five of the plants were previously wounded on the crown 1.5 cm above or below the soil line with a sterile needle. Five noninoculated plants served as controls. All plants were maintained at 25 ± 2°C and enclosed for 72 hr in polyethylene bags (90 to 95% relative humidity). Blight symptoms similar to those seen in nursery were observed on inoculated plants 20 to 25 days after inoculation, while no symptoms developed on control plants. Koch's postulates were fulfilled by reisolation of the fungus on acidified PDA from all infected laurustinus plants. S. rolfsii was previously recorded on Prague viburnum (Viburnum × pragense L.) as the causal agent of southern blight (1). To our knowledge, this is the first report of southern blight caused by S. rolfsii on laurustinus. References: (1) A. Hagan. Southern blight on flowers, shrubs, and trees. On-line publication ANR-1157. Alabama A & M, and Auburn University ( www.aces.edu/dept/extcomm/publications/html ). (2) R. Rodriguez-Kabana et al. Plant Dis. Rep. 59:5, 1975.


Sign in / Sign up

Export Citation Format

Share Document