scholarly journals First Report of “Candidatus Liberibacter solanacearum” on Tobacco in Honduras

Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1376-1376 ◽  
Author(s):  
E. Aguilar ◽  
V. G. Sengoda ◽  
B. Bextine ◽  
K. F. McCue ◽  
J. E. Munyaneza

In April of 2012, tobacco (Nicotiana tabacum L.) plants with symptoms resembling those associated with viral infection were observed in commercial fields in the Department of El-Paraíso, Honduras. Symptoms on affected plants included apical leaf curling and stunting, overall chlorosis and plant stunting, young plant deformation with cabbage-like leaves, wilting, and internal vascular necrosis of stems and leaf petioles. All cultivars grown were affected, with disease incidence ranging from 5 to 80% of symptomatic plants per field. The fields were also heavily infested with the psyllid Bactericera cockerelli. This psyllid is a serious pest of solanaceous crops in the United States, Mexico, Central America, and New Zealand and has been shown to transmit the bacterium “Candidatus Liberibacter solanacearum” to potato, tomato, and other solanaceous species (2,3). Tobacco (cv. Habano criollo) plant samples were collected from one field in the municipality of Trojes. Initial testing of the plant samples for viruses, including Tobacco mosaic virus, Impatiens necrotic spot virus, Cucumber mosaic virus, and Potato virus Y, using Immunostrips (Agdia, Elkhart, IN) were negative. Total DNA was then extracted from leaf tissues of a total of 13 plants, including eight symptomatic plants and five asymptomatic plants with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,4). The DNA samples were tested by PCR using specific PCR primer pairs OA2/OI2c and OMB 1482f/2086r, to amplify a portion of 16S rDNA and the outer membrane protein (OMB) gene of “Ca. L. solanacearum,” respectively (2). All eight (100%) symptomatic plant samples were positive for “Ca. L. solanacearum” with both sets of primer pairs. “Ca. L. solanacearum” was not detected in the asymptomatic plants. The 16S rDNA and OMB gene amplicons of two plant samples each were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the consensus sequences confirmed “Ca. L. solanaeacrum” in the tobacco samples. The 16S rDNA consensus sequences (1,168 bp) of all amplicons were identical and showed 100% identity with several 16S rDNA sequences of “Ca. L. solanacearum” in GenBank (e.g., Accession Nos. HM245242, JF811596, and JX559779). The consensus sequence of the OMB amplicon (605 bp) showed 97 to 100% homology with a number of “Ca. L. solanacearum” OMB sequences in GenBank, including Accession Nos. CP002371, FJ914617, JN848754 and JN848752. The tobacco-associated consensus 16S rDNA and OMB sequences from this study were deposited in GenBank as Accession Nos. KC768320 and KC768328, respectively. To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tobacco in Honduras, where this cash crop is economically important. This bacterium has also caused millions of dollars in losses to potato, tomato, and several other solanaceous crops in North and Central America and New Zealand, particularly in regions where B. cockerelli is present (3). Furthermore, “Ca. L. solanacearum” has caused significant economic damage to carrot crops in Europe, where it is transmitted by the psyllids Trioza apicalis in northern Europe (4) and B. trigonica in the Mediterranean region (1). References: (1) A. Alfaro-Fernandez et al. Plant Dis. 96:581, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1244-1244 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
E. Aguilar ◽  
B. Bextine ◽  
K. F. McCue

In April of 2012, tobacco (Nicotiana tabacum) plants with symptoms resembling those caused by viral infection were observed in commercial fields in several departments in Nicaragua, including Esteli and Nueva Segovia. Heavy infestations of the psyllid Bactericera cockerelli, a major insect pest of potato and other solanaceous crops and vector of the bacterium “Candidatus Liberibacter solanacearum” (Lso) (2,3), were observed in the affected fields. All cultivars grown were affected and 5 to 100% of plants in each field were symptomatic. Symptoms on affected plants included apical leaf curling and stunting, overall chlorosis and plant stunting, young plant deformation with cabbage-like leaves, wilting, internal vascular necrosis of stems and leaf petioles, and overall poor leaf quality. Plant samples were collected from a total of three psyllid-infested fields in the municipalities of Esteli, Condega, and Jalapa (one field/municipality). The plant samples were first tested for viruses, including Potato virus Y, Tobacco mosaic virus, Cucumber mosaic virus, and Impatiens necrotic spot virus, using Immunostrips (Agdia, Elkhart, IN) and no virus was detected. Total DNA was extracted from leaf tissues of a total of 22 plants, including 17 symptomatic plants and five asymptomatic plants from two cultivars (Corojo and Habano) with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,4). The DNA samples were tested by PCR using specific primer pairs OA2/OI2c and OMB 1482f/2086r, to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of Lso (2). 16 rDNA and OMB gene-derived fragments of 1,168 and 605 bp, respectively, were amplified from the DNA of 13 of 17 (76.5%) symptomatic plants, indicating the presence of Lso. No Lso was detected in the five asymptomatic plants. DNA amplicons of three plant samples (one plant/field) with each primer pair were cloned and two to four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences was the same for all three locations (GenBank Accession Nos. KC768323, KC768324, and KC768325) and showed 100% identity to numerous 16 rDNA sequences of Lso in GenBank, including accessions HM245242, JF811596, and JX559779. Similarly, identical OMB consensus sequences were observed in all three locations (KC768331 and KC768332 for Jalapa and Condega, respectively) that are 97 to 100% identical to a number of Lso sequences in GenBank (e.g., CP002371, FJ914617, JN848754, and JN848752). A second OMB sequence was isolated from the Esteli sample (KC768333) that was 98% identical with the consensus sequences from this and other sites and 100% identical to an OMB sequence from Lso in GenBank (JN848754). To our knowledge, this is the first report of Lso associated with tobacco. Tobacco is an important crop in many parts of the world, including Central and South America. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in the Americas and New Zealand (3). In addition, this plant pathogen has been reported as serious pest of carrot in Europe, where it is associated with the psyllids Trioza apicalis and B. trigonica (1,4). References: (1) A. Alfaro-Fernandez et al. Plant Dis. 96:581, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1375-1375 ◽  
Author(s):  
E. Aguilar ◽  
V. G. Sengoda ◽  
B. Bextine ◽  
K. F. McCue ◽  
J. E. Munyaneza

Tomato (Lycopersicum esculentum) crops grown in several departments of Honduras and heavily infested with the psyllid Bactericera cockerelli were observed in April of 2012 with plant symptoms suggestive of “Candidatus Liberibacter solanacearum” infection. B. cockerelli is a serious pest of potato, tomato, and other solanaceous plants and a vector of “Ca. L. solanacearum” (1,2,3,4). The symptoms included overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf purpling and scorching (2,3). Disease incidence ranged from 5 to 50% symptomatic plants per field. Tomato (cv. Pony) plant samples were collected from two psyllid-infested commercial fields in the municipalities of Danli and Comayagua in the departments of El-Paraiso and Comayagua, respectively. Total DNA was extracted from leaf tissues of 50 and 20 symptomatic and asymptomatic plants, respectively, with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1,3). The DNA samples were tested for “Ca. L. solanacearum” by PCR with primer pairs specific for 16S rDNA (OA2 and OI2c) and the outer membrane protein gene (OMB 1482f and 2086r) of the bacterium (1,2). Ten (20%) of the 50 symptomatic tomato samples were positive for “Ca. L. solanacearum” using both primer pairs and the remaining samples were negative for the bacterium with both primer sets. None of the 20 asymptomatic plants tested positive for “Ca. L. solanacearum”. Amplicons from DNA of two plant samples (one plant/municipality) with each primer pair were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences from the clones (deposited in GenBank as Accession Nos. KC768321 and KC768322) were identical for both locations and showed 99 to 100% identity to several “Ca. L. solanacearum” sequences in GenBank (e.g., JN848753, JN84856, and HM246509). The OMB consensus sequences from the two tomato plants (deposited in GenBank as KC768329 and KC768330) were 100% identical to OMB sequences of Lso in GenBank (CP002371 and JN48754, respectively). To our knowledge, this is the first report of “Ca. Liberibacter solanacearum” associated with tomato crops in Honduras. This bacterium has caused millions of dollars in losses to the tomato industry in the United States, Mexico, and New Zealand (2,3,4). Serious damages to tomato crops due to “Ca. L. solanacearum” could expand throughout Central America, especially in those countries where B. cockerelli occurs. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009. (4) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 639-639 ◽  
Author(s):  
J. E. Munyaneza ◽  
T. W. Fisher ◽  
V. G. Sengoda ◽  
S. F. Garczynski ◽  
A. Nissinen ◽  
...  

Carrot (Daucus carota) plants with symptoms resembling those of carrot psyllid (Trioza apicalis) damage (3,4) were observed in 14 commercial fields in southern Finland in August 2008; all cultivars grown were affected at approximately 5 to 35% symptomatic plants per field. T. apicalis, a pest of carrots in northern and central Europe, can cause up to 100% crop loss (3,4). Symptoms on affected plants included leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots (3,4). Given recent association of liberibacter with several annual crops affected by psyllids (1,2), an investigation on whether this bacterium is associated with symptoms of psyllid damage on carrots was conducted. Total DNA was extracted from petiole tissue of 20 symptomatic and 18 asymptomatic plants (cv. Maestro, Nanda, Nipomo, Nerac, and Fontana) sampled from 10 psyllid-infested fields in southern Finland, as well as 15 plants (cv. Primecut, Cheyenne, and Triple Play) grown from seed in an insect-free greenhouse, with the cetyltrimethylammoniumbromide (CTAB) method (2). DNA was also extracted from 10 carrot roots (cv. Nantura) of plants continuously exposed to field-collected carrot psyllid colonies in the laboratory. DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of “Candidatus Liberibacter solanacearum” (1,2). A 1,168 bp 16S rDNA fragment was detected in DNA from 1 asymptomatic and 16 symptomatic plants and a 669 bp rplJ/rplL fragment was amplified from DNA from 19 symptomatic and 6 asymptomatic plants, indicating presence of liberibacter. DNA from all 10 root samples yielded similar amplicons with both primer pairs. DNA from all the greenhouse carrot plants yielded no amplicon. Amplicons from DNA from three petioles and three roots with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the 12 amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequences from petiole and root tissues (GenBank Accession Nos. GU373049 and GU373048, respectively) showed 99.9% identity to those of “Ca. L. solanacearum” amplified from Capsicum annuum (FJ957896) and Solanum lycopersicum (FJ957897) from Mexico, and “Ca. L. psyllaurous” from potato psyllids (EU812559). The rplJ/rplL consensus sequences from petioles and roots (GenBank Accession Nos. GU373051 and GU373050, respectively) were 97.9% identical to the analogous rplJ/rplL “Ca. L. solanacearum” ribosomal protein gene sequence from solanaceous crops in New Zealand (EU834131) and to “Ca. Liberibacter” sp. sequence from zebra chip-affected potatoes in California (FJ498803). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with a nonsolanaceous species and the first report of this pathogen outside of North and Central America and New Zealand (1,2). References: (1) L. W. Liefting et al. Plant Dis. 93:208, 2009. (2) J. E. Munyaneza et al. Plant Dis. 93:552, 2009. (3) G. Nehlin et al. J. Chem. Ecol. 20:771, 1994. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
E. Aguilar ◽  
B. R. Bextine ◽  
K. F. McCue

In May of 2012, eggplant (Solanum melongena) plants in an experimental research plot located at Zamorano in the Department of Francisco Morazán, Honduras, were observed with symptoms that included leaf chlorosis and cupping, overall stunting, and production of small and malformed fruits. The research plot was planted next to a commercial tomato field heavily infested with the psyllid Bactericera cockerelli, a vector of ‘Candidatus Liberibacter solanacearum’ (1,2,3). This bacterium severely affects potato and other solanaceous species and is the putative causal agent of zebra chip disease (2,3). The plot was planted with the eggplant variety ‘China’ and about 25% of the plants were symptomatic. A total of 10 eggplant samples, including five symptomatic and five asymptomatic plants, were collected from the plot. Total DNA was extracted from the leaf tissue of each of the collected plants with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1). The DNA samples were then tested by PCR using specific primer sets OA2/OI2c and OMB 1482f/2086r to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of ‘Ca. L. solanacearum’ (1,2). OMB gene and 16S rDNA fragments of 605 and 1,168 bp, respectively, were amplified from the DNA of two of the five (40%) symptomatic plants with each primer set, indicating the presence of ‘Ca. L. solanacearum.’ No ‘Ca. L. solanacearum’ was detected in the five asymptomatic plants with either primer sets. DNA amplicons with both primer sets were cloned from the DNA of the two ‘Ca. L. solanacearum’-positive plant samples and four clones of each of the four amplicons were sequenced. BLASTn analysis of the 16S rDNA resulted in two independent but related consensus sequences (deposited in GenBank as Accession Nos. KF188224 and KF188225) and were 99% similar to each other. The two sequences showed 99 to 100% identity to a number of 16S rDNA sequences of ‘Ca. L. solanacearum’ in Genbank, including accessions HM245242, FJ811596, and KC768319. For the OMB amplicons, a single consensus sequence was obtained following clone sequencing and was deposited in GenBank as accession KF188229. BLASTn analysis of the sequence indicated that it was 100% identical to several OMB sequences of ‘Ca. L. solanacearum’ in GenBank, including accessions KC768331 and CP002371. To our knowledge, this is the first report of ‘Ca. L. solanacearum’ associated with eggplant in Honduras. Eggplant is an economically important commodity in Central America and serious damage to this crop due to this plant pathogen could expand throughout the region, especially if its insect vector B. cockerelli is not properly managed. ‘Ca. L. solanacearum’ has also caused millions of dollars in losses to potato and several other solanaceous crops in the United States, Mexico, Central America, and New Zealand (2,3). In addition, this bacterium severely damages carrot crops in Europe, where it is transmitted to carrot by the psyllids Trioza apicalis and B. trigonica (3,4). It is imperative that both ‘Ca. L. solanacearum’ and its insect vectors be effectively monitored and managed to minimize their threat to economically important vegetable crops in many parts of the world. References: (1) J. M. Crosslin et al. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1245-1245 ◽  
Author(s):  
B. Bextine ◽  
E. Aguilar ◽  
A. Rueda ◽  
O. Caceres ◽  
V. G. Sengoda ◽  
...  

In April of 2012, tomato plants (Solanum lycopersicum) grown near the town of Yuroconte in the municipality of La Palma, Chalatenango, El Salvador, were observed with symptoms resembling those of “Candidatus Liberibacter solanacearum” infection. The symptoms included overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf purpling and scorching (1,2,3). Disease incidence in several fields in the area ranged from 40 to 60%. Heavy infestations of the potato/tomato psyllid, Bactericera cockerelli, were observed in the affected fields and this insect has been shown to transmit “Ca. L. solanacearum” to tomato and other solanaceous species (1,2,3). Leaf samples and psyllids were collected from one of the fields and total DNA was purified from the leaves of 8 and 10 symptomatic and asymptomatic plants, respectively (2,3). DNA was also extracted from the psyllids and the samples were tested by PCR for species confirmation. PCR oligonucleotide primers specific for both 16S rDNA (OA2 and OI2c) and a gene for a surface antigen for the outer membrane protein (OMB) (OMB 1482f and 2086r) of “Ca. L. solanacearum” were used to confirm the presence of the bacterium in infected tomatoes (1). Four of the eight symptomatic tomatoes (50%) tested positive for “Ca. L. solanacearum” using both primer pairs and all asymptomatic plants were negative for the bacterium. The collected psyllids were first identified through a morphological key, then verified using species-specific PCR primers (CO1 F3 and CO1 meltR) that generated a 94-bp fragment that was consistent with DNA from B. cockerelli (4). Amplicons generated with DNA from two plant samples with each primer pair were cloned and four clones of each of the four amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences from the clones (1,168 bp; deposited in GenBank as Accession Nos. KC768318 and KC768319) showed 100% identity to “Ca. L. solanacearum” sequences in GenBank (HM246509 and HM245242, respectively). Two OMB consensus sequences were 98% identical (deposited in GenBank as KC768326 and KC768327) and both sequences were 97 to 100% identical to a number of “Ca. L. solanacearum” sequences in GenBank (e.g., CP002371, FJ914617, JN848754, and JN848752). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tomato in El Salvador and the first formal report of the bacterium in the country. This bacterium has caused millions of dollars in losses to the tomato industry in New Zealand, Mexico and the United States (2,3). Tomatoes are an economically important commodity in Central America and are severely damaged by “Ca. L. solanacearum” infection. The confirmation of “Ca. L. solanacearum” infections in El Salvador alerts the agricultural sector to the presence of this serious pathogen. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009. (4) K. D. Swisher et al. Environ. Entomol. 41:1019, 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 453-453 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
R. Stegmark ◽  
A. K. Arvidsson ◽  
O. Anderbrant ◽  
...  

Carrot (Daucus carota) plants with symptoms resembling those associated with the carrot psyllid Trioza apicalis and the bacterium “Candidatus Liberibacter solanacearum” (1–4) were observed in 70% of commercial fields in southern Sweden in August 2011, with approximately 1 to 45% symptomatic plants per field. T. apicalis, a pest of carrot in northern and central Europe, including Sweden, can cause as much as 100% crop loss and is associated with “Ca. L. solanacearum” (1–4). Symptoms on affected plants include leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots (3). Carrot plant and psyllid samples were collected from fields in the province of Halland. Total DNA was extracted from petiole and root tissues of 33 symptomatic and 16 asymptomatic plants (cvs. Nevis and Florida), with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,3). DNA was also extracted from 155 psyllids (3). DNA samples were tested by PCR using primer pairs OA2/OI2c (5′'-GCGCTTATTTTTAATAGGAGCGGCA-3′/5′-GCCTCGCGACTTCGCAACCCAT-3′) and CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′/5′-TATATCTATCGTTGCACCAG-3′), to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,3). A 1,168-bp 16S rDNA fragment was detected in the DNA from all 33 symptomatic and two asymptomatic plants, and a 668-bp rplJ/rplL fragment was amplified from the DNA of all 33 symptomatic and four asymptomatic plants, indicating the presence of liberibacter. DNA from 23 and 49 psyllid samples yielded similar amplicons with OA2/OI2c and CL514F/R primer pairs, respectively. Amplicons from the DNA of four carrot roots and three T. apicalis with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the 14 amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequences from carrot (GenBank Accession No. JN863095) and T. apicalis (GenBank Accession No. NJ863096) showed 100% identity to those of “Ca. L. solanacearum” previously amplified from carrot (GU373048 and GU373049) and T. apicalis (GU477254 and GU477255) from Finland (2,3). The rplJ/rplL consensus sequences from carrot (GenBank Accession No. JN863093) and T. apicalis (GenBank Accession No. JN863094) were 99% identical to the sequences of rplJ/rplL “Ca. L. solanacearum” ribosomal protein gene from carrots in Finland (GU373050 and GU373051). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with carrot and T. apicalis in Sweden. The disease associated with this bacterium caused millions of dollars in losses to potato and several other solanaceous crops in North and Central America and New Zealand (1). This plant pathogen is also associated with significant economic damage to carrot crops observed in Finland (2,3). References: (1) J. E. Munyaneza. Southwest. Entomol. 35:471, 2010. (2) J. E. Munyaneza et al. Plant Dis. 94:639, 2010. (3) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1076-1076 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
J. A. Garzón-Tiznado ◽  
O. G. Cardenas-Valenzuela

Tomato (Solanum lycopersicum) plants exhibiting symptoms resembling those of permanent yellowing disease (known in Mexico as “permanente del tomate”) that is commonly associated with phytoplasmas (1) were observed in tomato fields in Sinaloa, México in March 2009. Plant symptoms also resembled those caused by “Candidatus Liberibacter solanacearum” infection (2). Affected plants showed an overall chlorosis, severe stunting, leaf cupping, purple discoloration of veins, excessive branching of axillary shoots, and leaf scorching (1,2). Symptom incidence ranged from 18 to 40%. To investigate whether liberibacter is associated with permanent yellowing disease of tomato in México, eight symptomatic and five asymptomatic tomato plants were collected from two fields in La Cruz de Elota and Culiacán, Sinaloa. Total DNA was extracted from the top whole leaf tissue of symptomatic and asymptomatic plants with cetyltrimethylammoniumbromide (CTAB) buffer (3,4). DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/CL514R, which amplify a sequence from the 16S rDNA and rplJ and rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,4). The DNA samples were also tested for phytoplasmas with nested PCR using universal primer pairs P1/P7 and fU5/rU3 (3). DNA from five and four symptomatic plants yielded the expected 1,168-bp 16S rDNA and 669-bp rplJ/rplL amplicons, respectively, indicating the presence of liberibacter. Extracts from asymptomatic plants yielded no products with these primers. Amplicons generated from three symptomatic plants with each primer pair were cloned into pCRII-TOPO plasmid vectors (Invitrogen, Carlsbad, CA) and three clones of each of these amplicons were subsequently sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the 16S rDNA consensus sequence (GenBank Accession No. FJ957897) showed 100% identity to 16S rDNA sequences of “Ca. L. solanacearum” amplified from S. betaceum (EU935004) and S. lycopersicum (EU834130) from New Zealand (2), and “Ca. L. psyllaurous” from potato psyllids (EU812559). The rplJ/rplL consensus sequence (GenBank Accession No. FJ957895) was 100% identical to the analogous rplJ and rplL “Ca. L. solanacearum” ribosomal protein gene sequence amplified from S. lycopersicum (EU834131) from New Zealand (2) and ‘Ca. Liberibacter’ sp. sequence amplified from zebra chip-infected potatoes from Lancaster, CA (FJ498803). No phytoplasmas were detected in the symptomatic tomato plants. To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tomatoes in México. In 2008, this bacterium was detected in glasshouse tomatoes in New Zealand and caused millions of dollars in losses to the commercial glasshouse tomato industry (2). References: (1) R. L. Holguín-Peña et al. Plant Dis. 91:328, 2007. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) J. E. Munyaneza et al. Plant Dis. 93:552, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 154-154 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
E. Aguilar ◽  
B. Bextine ◽  
K. F. McCue

In April and May of 2012, bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of the bacterium ‘Candidatus Liberibacter solanacearum’ infection (2,4) were observed in commercial pepper fields in several departments in Honduras, including Francisco Morazán, Ocotepeque, El Paraíso, and Olancho. Many of the fields were infested with the psyllid Bactericera cockerelli, a vector of ‘Ca. L. solanacearum’ (3). The plants exhibited chlorotic or pale green apical growth and leaf cupping, sharp tapering of the leaf apex, shortened internodes, and overall stunting (2,4). All cultivars grown were affected and 20 to 75% of plants in each field were symptomatic. Pepper (var. Nataly) plant samples were collected from a total of eight affected fields (two fields per department). Total DNA was extracted from the top whole leaf tissue of a total of 19 plants, including 14 symptomatic and 5 asymptomatic pepper plants, with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1). The DNA samples were then tested by PCR using specific primer sets OA2/OI2c and OMB 1482f/2086r to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of ‘Ca. L. solanacearum’ (1,2). OMB gene and 16S rDNA fragments of 605 and 1,168 bp, respectively, were amplified from the DNA of 7 of 14 (50%) symptomatic plants with each primer set, indicating the presence of ‘Ca. L. solanacearum.’ No ‘Ca. L. solanacearum’ was detected in the five asymptomatic plants with either primer sets. DNA amplicons with both primer sets were cloned from the DNA of plant samples collected from each of the three departments: Francisco Morazán (in the locality of Zamorano), Ocotepeque (municipality of Plan del Rancho in Sinuapa), and El Paraíso (municipality of Danlí), and four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA resulted in a single consensus sequence for all three locations (deposited in GenBank as Accession Nos. KF188226, KF188227, and KF188228) and showed 100% identity to numerous 16S rDNA sequences of ‘Ca. L. solanacearum’ in GenBank, including accessions HM245242, JF811596, and KC768319. Similarly, identical OMB consensus sequences were observed in all three locations (deposited in GenBank as KF188230, KF188231, and KF188233) that are 100% identical to several ‘Ca. L. solanacearum’ sequences in GenBank (e.g., KC768331 and CP002371) along with a second consensus sequence (deposited in GenBank as accession KF188232) from Ocotepeque that was 99% identical to the consensus sequence from the three locations and sequences in GenBank. To our knowledge, this is the first report of ‘Ca. L. solanacearum’ associated with pepper crops in Honduras, where pepper constitutes an economically important commodity. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in United States, Mexico, Central America, and New Zealand (1,2,3,4). Furthermore, ‘Ca. L. solanacearum’ has been reported to severely damage carrot crops in Europe, where it is transmitted to carrot by the psyllids Trioza apicalis and Bactericera trigonica (3). Monitoring this pathogen and its vectors will prevent serious damage they cause to economically important crops. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 552-552 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
G. De la Rosa-Lozano ◽  
A. Sanchez

Zebra Chip (ZC), an emerging disease of potato (Solanum tuberosum L.) first documented in potato fields around Saltillo in México in 1994, has been identified in the southwestern United States, México, and Central America and is causing losses of millions of dollars to the potato industry (4). Recently, this damaging potato disease was also documented in New Zealand (3). This disease is characterized by a striped pattern of necrosis in tubers produced on infected plants, and fried chips processed from these infected tubers are commercially unacceptable (4). Recent studies conducted in the United States and New Zealand have associated ZC with a new species of ‘Candidatus Liberibacter’ vectored by the potato psyllid, Bactericera cockerelli Sulc (1,3,4). A bacterium designated ‘Candidatus Liberibacter psyllaurous’ has recently been identified in potato plants with “psyllid yellows” symptoms that resemble those of ZC (2). To investigate whether liberibacter is associated with ZC in México, 11 potato (cv. Atlantic) tuber samples exhibiting strong ZC symptoms and six asymptomatic tubers were collected from a ZC-affected commercial potato field near Saltillo City, Coahuila, México in September 2008 and tested for this bacterium by PCR. Total DNA was extracted from symptomatic and asymptomatic tubers with cetyltrimethylammoniumbromide (CTAB) buffer (4). DNA samples were tested by PCR using primer pair OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′, respectively) specific for 16S rDNA and primer pair CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′, respectively) designed from ribosomal protein genes (3). Seven of eleven (63.7%) ZC-symptomatic tubers and one of six (16.7%) asymptomatic potatoes yielded the expected 1,168-bp 16S rDNA and 669-bp CL514F/R amplicons, indicating the presence of liberibacter. Amplicons generated from symptomatic tubers were cloned into pCR2.1-Topo plasmid vectors (Invitrogen, Carlsbad, CA) and one clone of each amplicon was sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the ZC OA2/OI2c sequence (GenBank Accession No. FJ498806) showed 100% identity to liberibacter 16S rDNA sequences amplified from potato psyllids from Dalhart, TX and potato tubers from Garden City, KS (GenBank Accession Nos. EU921627 and EU921626, respectively). The ZC CL514F/R sequence (GenBank Accession No. FJ498807) was 98% identical to analogous rplJ and rplL liberibacter ribosomal protein gene sequences amplified from several solanaceous plants in New Zealand (GenBank Accession Nos. EU834131 and EU935005). The OA2/OI2c sequence was also identical to the 16S rDNA sequence (Genbank Accession No. EU812559) of ‘Ca. Liberibacter psyllaurous’ (2). To our knowledge, this is the first report of ‘Ca. Liberibacter psyllaurous’ associated with ZC-affected potatoes in México. References: (1) J. A. Abad et al. Plant Dis. 93:108, 2009. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1426-1426 ◽  
Author(s):  
R. Tahzima ◽  
M. Maes ◽  
E. H. Achbani ◽  
K. D. Swisher ◽  
J. E. Munyaneza ◽  
...  

In March of 2014, carrot plants (Daucus carota L. var. Mascot) exhibiting symptoms of yellowing, purpling, and curling of leaves, proliferation of shoots, formation of hairy secondary roots, general stunting, and plant decline were observed in commercial fields in the Gharb region of Morocco. The symptoms resembled those caused by phytoplasmas, Spiroplasma citri, or ‘Candidatus Liberibacter solanacearum’ infection (1,2,3). About 30% of the plants in each field were symptomatic and plants were infested with unidentified psyllid nymphs; some psyllids are known vectors of ‘Ca. L. solanacearum.’ A total of 10 symptomatic and 2 asymptomatic plants were collected from three fields. Total DNA was extracted from petiole and root tissues of each of the carrots, using the CTAB buffer extraction method (3). The DNA samples were tested for phytoplasmas and spiroplasmas by PCR (3) but neither pathogen was detected in the samples. The DNA extracts were tested for ‘Ca. L. solanacearum’ by PCR using specific primer pairs OA2/OI2c, Lso adkF/R, and CL514F/R, to amplify a partial fragment of the 16S rDNA, the adenylate kinase gene, and rpIJ/rpIL50S rDNA ribosomal protein genes, respectively (1,2,5). DNA samples from all 10 symptomatic carrots yielded specific bands; 1,168 bp for the 16S rDNA fragment, 770 bp for the adk fragment, and 669 bp for rpIJ/rpIL, indicating the presence of ‘Ca. L. solanacearum.’ No ‘Ca. L. solanacearum’ was detected in asymptomatic plants. DNA amplicons of three plant samples (one plant/field) for each primer pair were directly sequenced (Macrogen Inc., Amsterdam). Sequencing results identified two distinct products for the OA2/OI2c primer pair (GenBank Accession Nos. KJ740159 and KJ740160), and BLAST analysis of the 16S rDNA amplicons showed 99 and 100% identity to ‘Ca. L. solanacearum’ (KF737346 and HQ454302, respectively). Two different sequences of the adk amplicon were obtained (KJ740162 and KJ740163), both of which were 98% identical to ‘Ca. L. solanacearum’ (CP002371). Sequencing results also identified two distinct products for the CL514F/R primer pair (KJ754506 and KJ754507), and BLAST analysis of the 50S rDNA ribosomal protein showed 99 and 100% identity to ‘Ca. L. solanacearum’ (KF357912 and HQ454321, respectively). The differences in our 16S and 50S rDNA sequences identified the presence of both ‘Ca. L. solanacearum’ haplotypes D and E (4). To our knowledge, this is the first report of the occurrence of ‘Ca. L. solanacearum’ in Morocco and Africa, suggesting a wider distribution of the bacterium in carrot crops in the Mediterranean region, including North Africa. ‘Ca. L. solanacearum’ has caused economic damages to carrot and celery crops in the Canary Islands and mainland Spain, France, Sweden, Norway, and Finland (3). This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in the United States, Mexico, Central America, and New Zealand (1,2,5). Given the economic impact of ‘Ca. L. solanacearum’ on numerous important crops worldwide, it is imperative that preventive measures be taken to limit its spread. References: (1) L. W. Liefting et al. Plant Dis. 93:208, 2009. (2) J. E. Munyaneza et al. Plant Dis. 93:552, 2009. (3) J. E. Munyaneza et al. J. Plant Pathol. 93:697, 2011. (4) W. R. Nelson et al. Eur. J. Plant Pathol. 135:633, 2013. (5) A. Ravindran et al. Plant Dis. 95:1542, 2011.


Sign in / Sign up

Export Citation Format

Share Document