scholarly journals First Report of Leaf Spot Disease On Microstegium vimineum Caused by Bipolaris setariae in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Min Tan ◽  
Qiong Huang ◽  
Hao Fan ◽  
Yun Wu ◽  
Richard C. Reardon ◽  
...  

Microstegium vimineum, a Poaceae annual C4 plant, occurred widely in crop fields, tea gardens, orchards, under forests and roadsides in most provinces and regions south of the Yellow River, China. It was introduced into the eastern USA causing ecological and environmental damage (Stricker, 2016). In October 2015, M. vimineum plants with leaf spots were observed on the roadside of Mingling Road (32.04521°E, 118.84323°N), Nanjing, China. In an early stage of disease development, light brown or brown, round or oval shaped lesions appeared on the upper surface of leaves. In a middle stage, the lesions gradually expanded and the edges of the diseased leaves were lightly curled. In a late stage, leaves were withered or curled and the entire plant died. Initial disease incidence was up to 85% among natural populations of the weed. Diseased leaves collected from field were surface disinfected (75% ethanol for 30s; 1% sodium hypochlorite solution for 30s; 75% ethanol for 30s; sterile deionized water for 1min) and placed on water agar (20g agar per liter) (Kleczewski et al., 2010). Plates were incubated in the dark at 28℃ for 3 days. Following incubation, leaves, spores and conidiophores were examined using light microscopy. Single spores were obtained by using the single-spore procedure, plating out a loopful of spores onto water agar, and then carving individual spores out with associated agar under a microscope. Single spores were isolated, plated onto MV-agar (30g M. vimineum leaves, 20g agar per liter), and placed under 365 nm wavelength black light. Fungal colonies were transferred onto PDA medium, after 4 days colonies measured between 83 to 86 mm in diameter, appeared flat and dark brown, with short, light gray aerial hyphae. Conidiophores were solitary or clustered, light brown to medium brown, with pale apical color and multiple septa. The upper part was usually geniculated, 5.5-9.5 μm wide. Conidia were light yellowish brown to medium yellowish brown, mostly fusiform, straight or curved, fusoid or navicular, often slightly curved, rarely straight, smooth, 5-9 (mostly 7) septa, 48-70×10-14.5 μm (average 57×12.5 μm); hilium slightly prominent, and truncated at the base. Through morphological observation, the fungus was preliminarily identified as Bipolaris sp.. Four to five seeds of M. vimineum were planted in pots (10 cm in diameter) filled with nutrient soil, placed in the greenhouse and watered regularly. Four pots were inoculated with a conidia suspension of 1×105 sp/mL, at 4-5 true stage. Inoculated seedlings were maintained under 80% humidity and 28℃ for 24h in the dark, and then transferred to a greenhouse. Three pots of uninoculated seedlings were used as controls. Two days after the inoculation, buff-colored, irregular-shaped spots appeared centered on leaf veins. Within a week, diseased leaves became crinkled and their edges were yellow to brown due to proliferation of the spots. By 15 days, large areas of brown spots appeared on the leaves, some leaves turned yellow-brown and severely curled, and 80% of the plants had died. The diseased symptoms were similar to that of the field sample. The fungus re-isolated resulted morphologically identical to the original isolate grown on PDA medium and used for inoculation, thus fulfilled Koch’s postulates. The CTAB method was used to extract DNA from isolates of diseased leaves taken directly from the field, and the internal transcribed spacer (ITS) and glyceraldehyde 3-phosphate dehydrogenase gene (GPDH) were amplified using primer pairs of ITS1/ITS4 and GPD/GPD2 (Manamgoda et al., 2014) respectively. The ITS amplified sequence (Genbank accession MW446193) shared 100% identity with the reference sequence of Bipolaris setariae (MN215638.1) and the GPDH amplified sequence (MW464364) shared 99.83% identity with the reference sequence of B. setariae (MK144540.1). Field experiments were conducted in Laboratory Base of Nanjing Agricultural University, where M. vimineum plants were planted. Spore suspensions with concentrations of 105, 104, 103, 102, and 101 sp/mL were prepared, distilled water was used for control, and there were four replicates of each treatment. Twenty four plots were randomly arranged, the experimental unit consisted of 50 to 60 plants in an area of 0.5m×0.6m. The interval distance between plots was about 20 cm so as to prevent the mutual influence among treatments. M. vimineum plants were inoculated at 3-4 true leaf stage. Inoculation was done at sunset, and 60 mL spore suspension was sprayed onto each plot. After spraying, the waterproof-breathable black cloth was used to cover the plots, and removed 36 hours later. The outdoor temperature was 20~28℃. After 10 days, the symptoms of M. vimineum were observed and the disease index was recorded. SPSS 20 software (SPSS Inc., Chicago, IL, USA) was used for variance analysis, and Origin 9.0 (OriginLab, Hampton, MA, USA) was used to calculate the half lethal concentration (ED50) and 90% lethal concentration (ED90) of the strain MLL-1-5 on M. vimineum. Symptoms appeared on inoculated M. vimineum seedlings immediately after dark treatment. Within a week, all seedlings inoculated with the highest spore concentration were dead. Plants sprayed with water remained healthy. ED50 and ED90 of the strain MLL-1-5 was 1.9×101 and 1.4×103 sp/mL respectively, which indicated aggressiveness of the strain MLL-1-5 B. setariae. After 28 days, infected M. vimineum plants did not recover. This is the first report of leaf spot disease on M. vimineum caused by B. setariae in China. M. vimineum is a widely distributed and extremely harmful weed in China and United States. No biocontrol agents against M. vimineum are currently available. B. setariae may have potential as a biocontrol agent against M. vimineum both in China and the United States.

Plant Disease ◽  
2020 ◽  
Author(s):  
JiangTao Peng ◽  
Yao Chen ◽  
Guo ying Zhou ◽  
Jun Ang Liu

Dalbergia odorifera T. Chen is a national second-grade protected and one of the four famous trees in China, with high medicinal and economic value. Leaf spot disease in this plant can cause the leaves to dry up, perforate or even fall off, which affects the growth and development, and also has a great influence on its products. In May 2019, the leaf spot of Dalbergia odorifera T. Chen was found and observed in Chengmai County (N19°40′, E110°0′), Hainan Province, China, and the symptomatic leaves were brought back to the laboratory for research; According to our survey at that time, the incidence of the disease was between 10% and 15%. A sterile stainless-steel scalpel was used to cut the tissues at the junction of the leaf lesions and placed on a clean bench, soaked in alcohol (75 %) for 30 s, and rinsed thrice with sterile water. Then it was inserted obliquely onto lactic acid-containing potato dextrose agar (PDA) and incubated at 28 °C for 5 days. The growing prominent colonies were singled out and re-inoculated on PDA and SNA plates. Preliminary identification was based on morphological characteristics, followed by molecular identification of strains by evaluating genes for translation elongation factor-1α(TEF-1α), beta-tubulin, mitochondrial small subunit (mtSSU)( Duan et al. 2019; Cao et al.2019; Stenglein et al.2010), and histone H3 (Jacobs, et al. 2010) . Through morphological observation, the isolate was identified as Fusarium fujikuroi. At the initial stage of growth on PDA, the strain produced a large number of white hyphae, followed by pink and purple-brown hyphae in the center of the colony which spread to the surrounding area. The microspores were abundant, colorless, elliptic or clavate, without septum or at 1-2 septate, and the size was about 3.3 to 13.5 × 1.2 to 3.2 µm. After nine days of culturing on SNA medium, few, large conidia were observed, typically sickle-like, with 3-4 septa with a size of about 20 to 40.2 × 2.3 to 4.4 μm. The identity of the strains was determined by comparing the gene sequences of TEF-1α, mtSSU, beta-tubulin and histone H3 by NCBI BLAST. The results showed that TEF-1 α (MN958396), mtSSU (MN958394), β - tubulin (MN958395), and histone H3 (MN958397) from the target strain (jxht0302) had 100% sequence homology with F. fujikuroi (GenBank, accession numbers KF604040.1, MF984420.1, XM023575231.1, and MF356523.1 respectively). Next, the infection of D. odorifera T. Chen seedlings with and without injury was studied using a fungus block, with PDA as a control. Two days after inoculation with injury, obvious lesions were observed on the leaves, which appeared at least 5 days post- inoculation without injury, with no lesions in the control group. F. fujikuroi could be re-isolated from the leaves with lesions, but not from the control group. F. fujikuroi causes Black Rot of Macleaya cordata and maize ear rot (Yull et al.2019; Duan et al. 2019). As far as we know, this is the first report of F. fujikuroi causing leaf spot disease of D. odorifera T. Chen. Given the importance of D. odorifera T. Chen products, this disease needs more attention to tackle it.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1660-1660 ◽  
Author(s):  
R. Y. Ding ◽  
Q. Huang ◽  
Q. Zhang ◽  
Y. Wu ◽  
R. C. Reardon ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1256-1256 ◽  
Author(s):  
L. F. Zhai ◽  
J. Liu ◽  
M. X. Zhang ◽  
N. Hong ◽  
G. P. Wang ◽  
...  

Aloe vera L. var Chinese (Haw) Berg is a popular ornamental plant cultivated worldwide, whose extracts are used in cosmetics and medicine. Aloe plants are commonly affected by leaf spot disease caused by Alternaria alternata in Pakistan, India, and the United States (1). An outbreak of Alternaria leaf spot recently threatened aloe gel production and the value of ornamental commerce in Louisiana (1). During the summer of 2011, leaf spot symptoms were observed on A. vera plants growing in several greenhouses and ornamental gardens in Wuhan, Hubei Province, China. In two of the greenhouses, disease incidence reached 50 to 60%. The initial symptoms included chlorotic and brown spots that expanded to 2 to 4 mm in diameter and became darker with age. Lesions also developed on the tips of 30 to 50% of the leaves per plant. In severe infections, the lesions coalesced causing the entire leaf to become blighted and die. In September of 2012 and February of 2013, 10 symptomatic A. vera leaves were collected randomly from two greenhouses and gardens in Wuhan. A fungus was consistently recovered from approximately 80% of the tissue samples using conventional sterile protocols, and cultured on potato dextrose agar (PDA). The colonies were initially white, becoming grey to black, wool-like, and growing aerial mycelium covering the entire petri dish (9 cm in diameter) plate within 5 days when maintained in the dark at 25°C. The conidia were brown or black, spherical to subspherical, single celled (9 to 13 μm long × 11 to 15 μm wide), borne on hyaline vesicles at the tip of conidiophores. The conidiophores were short and rarely branched. These colonies were identified as Nigrospora oryzae based on the described morphological characteristics of N. oryzae (2). Genomic DNA was extracted from a representative isolate, LH-1, and the internal transcribed spacer region was amplified using primer pair ITS1/ITS4 (3). A 553-bp amplicon was obtained and sequenced. The resulting nucleotide sequence (GenBank Accession No. KC519728) had a high similarity of 99% to that of strain AHC-1 of N. oryzae (JQ864579). Pathogenicity tests for strain LH-1 were conducted in triplicate by placing agar pieces (5 mm in diameter) containing 5-day-old cultures on A. vera leaves. Four discs were placed on each punctured surface of each leaf. Noncolonized PDA agar pieces were inoculated as controls. Leaves were placed in moist chambers at 25°C with a 12-h photoperiod. After 3 days, the inoculated leaves showed symptoms similar to those observed in the greenhouses. N. oryzae was reisolated from these spots on the inoculated leaves. No visible symptoms developed on the control leaves. The pathogenicity tests were performed twice with the same results. Based on the results, N. oryzae was determined as a pathogen responsible for the leaf spots disease on A. vera. N. oryzae has been described as a leaf pathogen on fig (Ficus religiosa), cotton (Gossypium hirsutum) and Kentucky bluegrass (Poa pratensis) (4), and to our knowledge, this is the first report of N. oryae causing leaf spot disease on A. vera worldwide. References: (1) W. L. da Silva and R. Singh. Plant Dis. 86:1379, 2012. (2) M. B. Ellis. Dematiaceous Hyphomycetes, CAB, Kew, Surrey, England, 1971. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) L. X. Zhang et al. Plant Dis. 96:1379, 2012.


Plant Disease ◽  
2017 ◽  
Vol 101 (2) ◽  
pp. 387-387
Author(s):  
Q. Huang ◽  
L. G. Zhang ◽  
Y. Wu ◽  
R. C. Reardon ◽  
S. Qiang

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 148-148 ◽  
Author(s):  
J. Liu ◽  
H. D. Luo ◽  
W. Z. Tan ◽  
L. Hu

Conyza sumatrensis (Asteraceae), an annual or biennial plant, is native to North and South America. It is an invasive, noxious weed that is widespread in southern and southeastern China. It invades farm land and causes great losses to dry land crops, including wheat, corn, and beans. It also reduces biological diversity by crowding out native plants in the infested areas (3,4). During a search for fungal pathogens that could serve as potential biological control agents of C. sumatrensis, a leaf spot disease was observed in 2010 in Chongqing, China. An isolate (SMBC22) of a highly virulent fungus was obtained from diseased leaves. Pathogenicity tests were performed by placing 6-mm-diameter mycelial disks of 7-day-old potato dextrose agar (PDA) cultures of SMBC22 on leaves of 15 healthy greenhouse-grown plants of C. sumatrensis; the same number of control plants was treated with sterile PDA disks. Treated plants were covered with plastic bags for 24 h and maintained in a growth chamber with daily average temperatures of 24 to 26°C, continuous light (3,100 lux), and high relative humidity (>90%). Lesions similar to those observed in the field were first obvious on the SMBC22-inoculated leaves 3 days after inoculation. Symptoms became severe 7 to 9 days after inoculation. Control plants remained healthy. The fungus was reisolated from inoculated and diseased leaves and it was morphologically the same as SMBC22. The pathogenicity test was conducted three times. A survey of 10 southern and southeastern Chinese provinces revealed that the disease was widespread and it attacked leaves and stems of seedlings and mature plants of C. sumatrensis. Lesions on leaves were initially small, circular, and water soaked. The typical lesion was ovoid or fusiform, dark brown, and surrounded by a yellow halo. The spots coalesced to form large lesions and plants were often completely blighted. Fungal colonies of SMBC22 on PDA plates were initially white and turned dark gray. Colonies were circular with smooth edges with obvious rings of pycnidia on the surface. Aerial hyphae were short and dense. Pycnidia, black and immersed or semi-immersed in the medium, were visible after 12 days of incubation. Pycnidia were 72 to 140 μm in diameter. Conidia were produced in the pycnidia and were hyaline, unicellular, ellipsoidal, and 4.4 to 6.1 × 1.6 to 2.2 μm. To confirm identification of the fungus, genomic DNA was extracted from mycelia of a 7-day-old culture on PDA at 25°C (2). The internal transcribed spacer (ITS) gene of rDNA was amplified using primers ITS4/ITS5. The gene sequence was 524 bp long and registered in NCBI GenBank (No. HQ645974). BLAST analysis showed that the current sequence had 99% homology to an isolate of Phoma macrostoma (DQ 404792) from Cirsium arvense (Canada thistle) in Canada and reported to cause chlorotic symptoms on that host plant (1). To our knowledge, this is the first report of P. macrostoma causing disease on C. sumatrensis in China. P. macrostoma, thought of as a biocontrol agent of broadleaf weeds in Canada, has been patented in the United States. The current isolate of P. macrostoma is considered as a potential biocontrol agent of C. sumatrensis. References: (1) P. R. Graupner et al. J. Nat. Prod. 66:1558, 2004. (2) S. Takamatsu et al. Mycoscience 42:135, 2001. (3) W. Z. Tan et al. Page 177 in: Manual of Emergency Control Technology Invasive Pests in China. G. L. Zhang, ed. Science Press, Beijing, 2010. (4) C. Wang et al. J. Wuhan Bot. Res. 28:90, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 318-318
Author(s):  
S. Zhao ◽  
G. Xie ◽  
H. Zhao ◽  
H. Li ◽  
C. Li

Snow lotus (Saussurea involucrata Karel. & Kir. ex Sch. Bip.) is an economically important medicinal herb increasingly grown in China in recent years. In June of 2005, a leaf spot disease on commercially grown plants was found in the QiTai Region, south of the Tianshan Mountain area of Xinjiang, China at 2,100 m above sea level. Disease incidence was approximately 60 to 70% of the plants during the 2006 and 2007 growing seasons. Initial symptoms appeared on older leaves as irregularly shaped, minute, dark brown-to-black spots, with yellow borders on the edge of the leaflet blade by July. As the disease progressed, the lesions expanded, causing the leaflets to turn brown, shrivel, and die. A fungus was consistently isolated from the margins of these lesions on potato dextrose agar. Fifty-eight isolates were obtained that produced abundant conidia in the dark. Conidia were usually solitary, rarely in chains of two, ellipsoid to obclavate, with 6 to 11 transverse and one longitudinal or oblique septum. Conidia measured 60 to 80 × 20 to 30 μm, including a filamentous beak (13 to 47 × 3.5 to 6 μm). According to the morphology, and when compared with the standard reference strains, the causal organism of leaf spot of snow lotus was identified as Alternaria carthami (1,4). Pathogenicity of the strains was tested on snow lotus seedlings at the six-leaf stage. The lower leaves of 20 plants were sprayed until runoff with conidial suspensions of 1 × 104 spores mL–1, and five plants sprayed with sterile distilled water served as controls. All plants were covered with a polyethylene bag, incubated at 25°C for 2 days, and subsequently transferred to a growth chamber at 25°C with a 16-h photoperiod. Light brown lesions developed within 10 days on leaflet margins in all inoculated plants. The pathogen was reisolated from inoculated leaves, and isolates were deposited at the Key Oasis Eco-agriculture Laboratory of Xinjiang Production and Construction Group, Xinjiang and the Institute of Biotechnology, Zhejiang University. No reports of a spot disease caused by A. carthami on snow lotus leaves have been found, although this pathogen has been reported on safflower in western Canada (3), Australia (2), India (1), and China (4). To our knowledge, this is the first report of a leaf spot caused by A. carthami on snow lotus in China. References: (1) S. Chowdhury. J. Indian Bot. Soc. 23:59, 1944. (2) J. A. G. Irwin. Aust. J. Exp. Agric. Anim. Husb. 16:921, 1976. (3) G. A. Petrie. Can. Plant Dis. Surv. 54:155, 1974. (4) T. Y. Zhang. J. Yunnan Agric. Univ.17:320, 2002.


Sign in / Sign up

Export Citation Format

Share Document