microstegium vimineum
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Dhanushya Ramachandran ◽  
Cynthia D Huebner ◽  
Mark Daly ◽  
Jasmine Haimovitz ◽  
Thomas Swale ◽  
...  

The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12 Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1-2 million years, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.


Plant Disease ◽  
2021 ◽  
Author(s):  
Min Tan ◽  
Qiong Huang ◽  
Hao Fan ◽  
Yun Wu ◽  
Richard C. Reardon ◽  
...  

Microstegium vimineum, a Poaceae annual C4 plant, occurred widely in crop fields, tea gardens, orchards, under forests and roadsides in most provinces and regions south of the Yellow River, China. It was introduced into the eastern USA causing ecological and environmental damage (Stricker, 2016). In October 2015, M. vimineum plants with leaf spots were observed on the roadside of Mingling Road (32.04521°E, 118.84323°N), Nanjing, China. In an early stage of disease development, light brown or brown, round or oval shaped lesions appeared on the upper surface of leaves. In a middle stage, the lesions gradually expanded and the edges of the diseased leaves were lightly curled. In a late stage, leaves were withered or curled and the entire plant died. Initial disease incidence was up to 85% among natural populations of the weed. Diseased leaves collected from field were surface disinfected (75% ethanol for 30s; 1% sodium hypochlorite solution for 30s; 75% ethanol for 30s; sterile deionized water for 1min) and placed on water agar (20g agar per liter) (Kleczewski et al., 2010). Plates were incubated in the dark at 28℃ for 3 days. Following incubation, leaves, spores and conidiophores were examined using light microscopy. Single spores were obtained by using the single-spore procedure, plating out a loopful of spores onto water agar, and then carving individual spores out with associated agar under a microscope. Single spores were isolated, plated onto MV-agar (30g M. vimineum leaves, 20g agar per liter), and placed under 365 nm wavelength black light. Fungal colonies were transferred onto PDA medium, after 4 days colonies measured between 83 to 86 mm in diameter, appeared flat and dark brown, with short, light gray aerial hyphae. Conidiophores were solitary or clustered, light brown to medium brown, with pale apical color and multiple septa. The upper part was usually geniculated, 5.5-9.5 μm wide. Conidia were light yellowish brown to medium yellowish brown, mostly fusiform, straight or curved, fusoid or navicular, often slightly curved, rarely straight, smooth, 5-9 (mostly 7) septa, 48-70×10-14.5 μm (average 57×12.5 μm); hilium slightly prominent, and truncated at the base. Through morphological observation, the fungus was preliminarily identified as Bipolaris sp.. Four to five seeds of M. vimineum were planted in pots (10 cm in diameter) filled with nutrient soil, placed in the greenhouse and watered regularly. Four pots were inoculated with a conidia suspension of 1×105 sp/mL, at 4-5 true stage. Inoculated seedlings were maintained under 80% humidity and 28℃ for 24h in the dark, and then transferred to a greenhouse. Three pots of uninoculated seedlings were used as controls. Two days after the inoculation, buff-colored, irregular-shaped spots appeared centered on leaf veins. Within a week, diseased leaves became crinkled and their edges were yellow to brown due to proliferation of the spots. By 15 days, large areas of brown spots appeared on the leaves, some leaves turned yellow-brown and severely curled, and 80% of the plants had died. The diseased symptoms were similar to that of the field sample. The fungus re-isolated resulted morphologically identical to the original isolate grown on PDA medium and used for inoculation, thus fulfilled Koch’s postulates. The CTAB method was used to extract DNA from isolates of diseased leaves taken directly from the field, and the internal transcribed spacer (ITS) and glyceraldehyde 3-phosphate dehydrogenase gene (GPDH) were amplified using primer pairs of ITS1/ITS4 and GPD/GPD2 (Manamgoda et al., 2014) respectively. The ITS amplified sequence (Genbank accession MW446193) shared 100% identity with the reference sequence of Bipolaris setariae (MN215638.1) and the GPDH amplified sequence (MW464364) shared 99.83% identity with the reference sequence of B. setariae (MK144540.1). Field experiments were conducted in Laboratory Base of Nanjing Agricultural University, where M. vimineum plants were planted. Spore suspensions with concentrations of 105, 104, 103, 102, and 101 sp/mL were prepared, distilled water was used for control, and there were four replicates of each treatment. Twenty four plots were randomly arranged, the experimental unit consisted of 50 to 60 plants in an area of 0.5m×0.6m. The interval distance between plots was about 20 cm so as to prevent the mutual influence among treatments. M. vimineum plants were inoculated at 3-4 true leaf stage. Inoculation was done at sunset, and 60 mL spore suspension was sprayed onto each plot. After spraying, the waterproof-breathable black cloth was used to cover the plots, and removed 36 hours later. The outdoor temperature was 20~28℃. After 10 days, the symptoms of M. vimineum were observed and the disease index was recorded. SPSS 20 software (SPSS Inc., Chicago, IL, USA) was used for variance analysis, and Origin 9.0 (OriginLab, Hampton, MA, USA) was used to calculate the half lethal concentration (ED50) and 90% lethal concentration (ED90) of the strain MLL-1-5 on M. vimineum. Symptoms appeared on inoculated M. vimineum seedlings immediately after dark treatment. Within a week, all seedlings inoculated with the highest spore concentration were dead. Plants sprayed with water remained healthy. ED50 and ED90 of the strain MLL-1-5 was 1.9×101 and 1.4×103 sp/mL respectively, which indicated aggressiveness of the strain MLL-1-5 B. setariae. After 28 days, infected M. vimineum plants did not recover. This is the first report of leaf spot disease on M. vimineum caused by B. setariae in China. M. vimineum is a widely distributed and extremely harmful weed in China and United States. No biocontrol agents against M. vimineum are currently available. B. setariae may have potential as a biocontrol agent against M. vimineum both in China and the United States.


2021 ◽  
Author(s):  
Liliana Benitez ◽  
Amy E. Kendig ◽  
Ashish Adhikari ◽  
Keith Clay ◽  
Philip F. Harmon ◽  
...  

AbstractPlant litter can alter ecosystems and promote plant invasions by changing resource acquisition, depositing toxins, and transmitting microorganisms to living plants. Transmission of microorganisms from invasive litter to live plants may gain importance as invasive plants accumulate pathogens over time since introduction. It is unclear, however, if invasive plant litter affects native plant communities by promoting disease. Microstegium vimineum is an invasive grass that suppresses native populations, in part through litter production, and has accumulated leaf spot diseases since its introduction to the U.S. In a greenhouse experiment, we evaluated how M. vimineum litter and accumulated pathogens mediated resource competition with the native grass Elymus virginicus. Resource competition reduced biomass of both species and live M. vimineum increased disease incidence on the native species. Microstegium vimineum litter also promoted disease on the native species, suppressed establishment of both species, and reduced biomass of M. vimineum. Nonetheless, interference competition from litter had a stronger negative effect on the native species, increasing the relative abundance of M. vimineum. Altogether, invasive grass litter suppressed both species, ultimately favoring the invasive species in competition, and increased disease incidence on the native species.


2020 ◽  
Vol 10 (20) ◽  
pp. 11133-11143
Author(s):  
Andrew P. Landsman ◽  
Karin T. Burghardt ◽  
Jacob L. Bowman

Mycologia ◽  
2020 ◽  
Vol 112 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Brett Lane ◽  
Kerry Bohl Stricker ◽  
Ashish Adhikari ◽  
Marina S. Ascunce ◽  
Keith Clay ◽  
...  

2020 ◽  
Vol 34 (5) ◽  
pp. 776-778
Author(s):  
Josh R. Weaver ◽  
Philip J. Brown ◽  
Lambert B. McCarty ◽  
Nathaniel Gambrell

AbstractJapanese stiltgrass is regarded as one of the most troublesome invasive species in the United States. It is commonly found invading forested areas; however, more recently it has been noted to be invading golf course roughs and out-of-play areas. The purpose of this study was to evaluate POST herbicide control of Japanese stiltgrass in golf course and highly maintained turfgrass facilities. None of the treatments provided >80% Japanese stiltgrass control 2 wk after treatment (WAT). At 4 WAT >80% Japanese stiltgrass control was observed with MSMA, MSMA + metribuzin, amicarbazone, and sethoxydim, whereas metsulfuron, pinoxaden, and imazapic provided minimum control. By 8 WAT, MSMA, MSMA + metribuzin, amicarbazone, and sethoxydim provided >98% control, whereas quinclorac, metsulfuron, pinoxaden, and imazapic provided no visible control. Thiencarbazone-methyl + foramsulfuron + halosulfuron-methyl, and sulfentrazone provided limited (≤60%) control. This study indicates that POST control of Japanese stiltgrass can be achieved with MSMA, MSMA + metribuzin, amicarbazone, and sethoxydim. Future research should include long-term control over multiple growing seasons, repeat applications of herbicides, and evaluation of herbicides in combination for increased and longer-term Japanese stiltgrass control.


Plant Ecology ◽  
2020 ◽  
Vol 221 (3) ◽  
pp. 167-175 ◽  
Author(s):  
David F. Barfknecht ◽  
David J. Gibson ◽  
Kurt M. Neubig

Sign in / Sign up

Export Citation Format

Share Document