scholarly journals First Report of Leaf Spot Disease Caused by Alternaria brassicae on Orychophragmus violaceus in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Ning Qian ◽  
Yuhong Wu ◽  
Cailian Feng ◽  
Guozhen Zhang ◽  
Xunli Lu ◽  
...  

Orychophragmus violaceus, belonging to the Brassicaceae family, is widely grown in many provinces of China as an ornamental plant and also as a green manure crop. In December 2019, field investigations showed that a leaf spot disease occurred on O.violaceus with 50% to 80% incidence in Huize City, Yunnan Province of China. Infected leaves showed symptoms of small black point spots in the early stage of onset. The lesions are distributed throughout the leaves and finaly expand to 10-15 mm in diameter after 10-15 days of onset. At this time, the lesions are gray to black, and some have round patterns, and gray-white mildew layers can be seen on the front and back of the lesions in a humid environment. The leaves with typical lesion symptoms were sampled and photographed, and then subjected to isolate and characterize the pathogen. Six pure cultures (HEYA2; HEYA4; HEYC6; HEYD7; HEYD8; HEYD10) were obtained by single-hyphae isolation. On PCA medium, colony can reach 27 mm after 7d, at 25°C in darkness. Aerial hypha is cottony with white to pale gray color, while the colony reverse is fawn to dark. on V8 medium, conidiophore solitary or clustered, erect or knee-curved, occasionally branched, pare brown, separated, 82–130 × 5–9 µm. Conidia are solitary, straight or slightly curved, inverted rod-shaped, pare brown to brown, with 6-10 transverse septa, 0-5 oblique and longitudinal septa, columnar beak, conidial bodies (47.7-)69.3-103.8(-119.6)(11.2-)16.6-23.6(-27.8) µm. Beak septum, pare brown, (29.2-)34.4-72.4(-101.3)(4.2-)6.6-9.5(-11.3) µm. Morphologically these isolates resembled species belonging to genus Alternaria (Simmons, 2007). Genomic DNA of each culture was quickly extracted from mycelia using QS method (Chi et al. 2009). The ITS region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase II second largest subunit (RPB2) and translation elongation factor -1α (TEF -1α) genes were amplified according described procedures (White et al. 1990; Berbee et al. 1999; Liu et al. 1999;Sung et al. 2007; Carbone & Kohn 1999). The sequences obtained in this study were deposited in GenBank with accession numbers: MW867245, MW867246, MW867247, MW867248, MW867249, MW867250, MW882913, MW882914, MW882915, MW882916, MW882917, MW882918, MW882919, MW882920, MW882921, MW882922, MW882923, MW882924, MW882925, MW882926, MW882927, MW882928, MW882929, MW882930. Phylogenetic analysis was conducted with combined sequences of the four loci, using the maximum likelihood method and the maximum parsimony method. In the phylogenetic tree, the six isolates and Alternaria brassicae (CBS 116528) clustered together with high bootstrap support values (MLBS=100; MPBS= 100). Based on both morphological characters and phylogenetic results, the isolates were identified as Alternaria brassicae. Pathogenicity test of isolate HEYA2 was carried out on the detached leaves in a dark thermostat incubator at 25°C. Five pots per leaf were inoculated with mycelia plugs (5 mm in diameter), another five pots were inoculated with pure agar plugs and used as the negative control. In addition, conidia suspension (105 conidia/ml) of isolate HEYD8 were sprayed on 3-month-old healthy plants grown in a greenhouse at 22 °C–28 °C. The plants sprayed with sterilized water were used as negative controls. The test was conducted three times. After 5-7 days, the leaves inoculated with other the conidia suspension or the mycelium plugs showed brown necrotic lesions that are similar to the symptoms observed in the field, but the controls remained healthy. The pathogen was reisolated and confirmed to be A. brassicae, completing Koch’s postulates. To our knowledge, this is the first report of leaf spot disease caused by A. brassicae on Orychophragmus violaceus in China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Walftor Dumin ◽  
Mi-Jeong Park ◽  
You-Kyoung Han ◽  
Yeong-Seok Bae ◽  
Jong-Han Park ◽  
...  

Garlic (Allium sativum L. cv.namdo) is one of the most popular vegetables grown in Korea due to its high demand from the food industry. However, garlic is susceptible to a wide range of pest infestations and diseases that cause a significant decrease in garlic production, locally and globally (Schwartz and Mohan 2008). In early 2019, the occurrence of leaf blight disease was found spreading in garlic cultivation areas around Jeonnam (34.9671107, 126.4531825) province, Korea. Disease occurrence was estimated to affect 20% of the garlic plants and resulted in up to a 3-5% decrease in its total production. At the early stage of infection, disease symptoms were manifested as small, white-greyish spots with the occurrence of apical necrosis on garlic leaves. This necrosis was observed to enlarge, producing a water-soaked lesion before turning into a black-violet due to the formation of conidia. As the disease progressed, the infected leaves wilted, and the whole garlic plants eventually died. To identify the causal agent, symptomatic tissues (brown dried water-soak lesion) were excised, surface sterilized with 1% NaOCl and placed on the Potato Dextrose Agar (PDA) followed by incubation at 25°C in the dark for 5 days. Among ten fungal isolates obtained, four were selected for further analyses. On PDA, fungal colonies were initially greyish white in colour but gradually turned to yellowish-brown after 15 days due to the formation of yellow pigments. Conidia were muriform, brown in colour, oblong (almost round) with an average size of 18 – 22 × 16 – 20 μm (n = 50) and possessed 6 - 8 transverse septa. Fungal mycelia were branched, septate, and with smooth-walled hyphae. Morphological characteristics described above were consistent with the morphology of Stemphylium eturmiunum as reported by Simmons (Simmons, 2001). For molecular identification, molecular markers i.e. internal transcribed spacer (ITS) and calmodulin (cmdA) genes from the selected isolates were amplified and sequenced (White et al., 1990; Carbone and Kohn 1999). Alignment analysis shows that ITS and cmdA genes sequence is 100% identical among the four selected isolates. Therefore, representative isolate i.e. NIHHS 19-142 (KCTC56750) was selected for further analysis. BLASTN analysis showed that ITS (MW800165) and cmdA (LC601938) sequences of the representative isolates were 100% identical (523/523 bp and 410/410 bp) to the reference genes in Stemphylium eturmiunum isolated from Allium sativum in India (KU850545, KU850835) respectively (Woudenberg et al. 2017). Phylogenetic analysis of the concatenated sequence of ITS and cmdA genes confirmed NIHHS 19-142 isolates is Stemphylium eturmiunum. Pathogenicity test was performed using fungal isolate representative, NIHHS 19-142. Conidia suspension (1 × 106 conidia/µL) of the fungal isolate was inoculated on intact garlic leaves (two leaves from ten different individual plants were inoculated) and bulbs (ten bulbs were used) respectively. Inoculation on intact leaves was performed at NIHHS trial farm whereas inoculated bulbs were kept in the closed container to maintain humidity above 90% and incubated in the incubator chamber at 25°C. Result show that the formation of water-soaked symptoms at the inoculated site was observed at 14 dpi on intact leaves whereas 11 dpi on bulbs. As a control, conidia suspension was replaced with sterile water and the result shows no symptoms were observed on the control leaves and bulbs respectively. Re-identification of fungal colonies from symptomatic leaf and bulb was attempted. Result showed that the morphological characteristics and molecular marker sequences of the three colonies selected were identical to the original isolates thus fulfilled Koch’s postulates. Early identification of Stemphylium eturmiunum as a causal agent to leaf spot disease is crucial information to employ effective disease management strategies or agrochemical applications to control disease outbreaks in the field. Although Stemphylium eturmiunum has been reported to cause leaf spot of garlic disease in China, France and India (Woudenberg et al. 2017), to our knowledge, this is the first report of causing leaf spot disease on garlic in Korea.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Ya Li ◽  
Hong Kai Zhou

Wild rice (Oryza rufipogon) has been widely studied and cultivated in China in recent years due to its antioxidant activities and health-promoting effects. In December 2018, leaf spot disease on wild rice (O. rufipogon cv. Haihong-12) was observed in Zhanjiang (20.93 N, 109.79 E), China. The early symptom was small purple-brown lesions on the leaves. Then, the once-localized lesions coalesced into a larger lesion with a tan to brown necrotic center surrounded by a chlorotic halo. The diseased leaves eventually died. Disease incidence was higher than 30%. Twenty diseased leaves were collected from the fields. The margin of diseased tissues was cut into 2 × 2 mm2 pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s, and then rinsed three times with sterile water before isolation. The tissues were plated on potato dextrose agar (PDA) medium and incubated at 28 °C in the dark for 4 days. Pure cultures were produced by transferring hyphal tips to new PDA plates. Fifteen isolates were obtained. Two isolates (OrL-1 and OrL-2) were subjected to further morphological and molecular studies. The colonies of OrL-1 and OrL-1 on PDA were initially light gray, but it became dark gray with age. Conidiophores were single, straight to flexuous, multiseptate, and brown. Conidia were oblong, slightly curved, and light brown with four to nine septa, and measured 35.2–120.3 µm × 10.3–22.5 µm (n = 30). The morphological characteristics of OrL-1 and OrL-2 were consistent with the description on Bipolaris oryzae (Breda de Haan) Shoemaker (Manamgoda et al. 2014). The ITS region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation elongation factor (EF-1α) were amplified using primers ITS1/ITS4, GDF1gpp1/GDR1 gdp2 (Berbee et al. 1999), and EF-1α-F/EF-1α-R EF-1/EF-2 (O’Donnell 2000), respectively. Amplicons of OrL-1 and OrL-2 were sequenced and submitted to GenBank (accession nos. MN880261 and MN880262, MT027091 and MT027092, and MT027093 and MT027094). The sequences of the two isolates were 99.83%–100% identical to that of B. oryzae (accession nos. MF490854,MF490831,MF490810) in accordance with BLAST analysis. A phylogenetic tree was generated on the basis of concatenated data from the sequences of ITS, GAPDH, and EF-1α via Maximum Likelihood method, which clustered OrL-1 and OrL-2 with B. oryzae. The two isolates were determined as B. oryzae by combining morphological and molecular characteristics. Pathogenicity test was performed on OrL-1 in a greenhouse at 24 °C to 30 °C with 80% relative humidity. Rice (cv. Haihong-12) with 3 leaves was grown in 10 pots, with approximately 50 plants per pot. Five pots were inoculated by spraying a spore suspension (105 spores/mL) onto leaves until runoff occurred, and five pots were sprayed with sterile water and used as controls. The test was conducted three times. Disease symptoms were observed on leaves after 10 days, but the controls remained healthy. The morphological characteristics and ITS sequences of the fungal isolates re-isolated from the diseased leaves were identical to those of B. oryzae. B. oryzae has been confirmed to cause leaf spot on Oryza sativa (Barnwal et al. 2013), but as an endophyte has been reported in O. rufipogon (Wang et al. 2015).. Thus, this study is the first report of B. oryzae causing leaf spot in O. rufipogon in China. This disease has become a risk for cultivated wild rice with the expansion of cultivation areas. Thus, vigilance is required.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 976
Author(s):  
Lai Lai Aung Sein ◽  
Guo Geng Jia ◽  
Ya Qun Tao ◽  
Hai Feng Liu ◽  
Guo Jian Xu ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Weihuai Wu ◽  
Mengfeng Zhu ◽  
YanQiong Liang ◽  
Xuehui Bai ◽  
Ying Lu ◽  
...  

Coffee is a tropical plant with two widely cultivated species, namely Coffea arabica and Coffea canephora. A leaf spot disease causing brownish and necrotic lesions was broken out on the C. canephora coffee seedlings in a nursery in Ruili County, Yunnan Province, China, during 2018 to 2019. The incidence of the disease was 15% ~ 20%. Ten diseased leaf samples from five diseased plants were collected for pathogen isolation by tissue separation method. Leaf pieces were cut from the margin of the necrotic lesions (4 × 6 mm), surface-sterilized for 30 s in 75% ethanol, followed by 0.1% arsenic mercury solution for 15 s, then washed 3~4 times with sterilized distilled water and transferred onto potato dextrose agar (PDA) medium in petri plates. Four morphologically similar isolates were obtained from lesions and cultivated on PDA at 25°C. Initial colonies of isolates were round, neat edge, white, floccose mycelium and developed dark green-to-black concentric rings that were sporodochia bearing viscid spore masses after 5~7 days. Conidia were acetates, hyaline and cylindrical with both rounded ends and 4.8 to 6.4 µm long × 1.6 to 2.6 µm wide. Koch's test were conducted on three healthy plants leaves of original source variety C. canephora No.2 and C.arabica Catimor CIFC7963 (control plants) with spore suspension (1 × 106/mL), respectively. Meanwhile, equal numbers of healthy plants were inoculated with water as controls. After inoculation, the plants were transferred into an incubator at 25℃ with saturated humidity. After 10 days of inoculation, all the tested plants presented similar typical symptoms with the diseased leaves under natural conditions; whereas the controls remained healthy. Koch’s postulates were performed by re-isolating the fungus from the inoculated leaves and verifying its colony and morphological characters. Two single spore isolates cultured on PDA medium were selected for DNA extraction. The ribosomal internal transcribed spacer (ITS) was PCR amplified by using primers ITS1 and ITS4 (White et al., 1990), β-tubulin gene by Bt2a and Bt2b (Glass and Donaldson, 1995), the RNA polymerase II second largest subunit (rpb2) by RPB2-5F2 and RPB2-7cR (O’Donnell et al, 2007), calmodulin (cmda) gene by CAL-228F and CAL2Rd (Groenewald et al., 2013). The sequences of ITS (MT853067 ~ MT853068), β-tubulin (MT897899 ~ MT897900), rpb2 (MW256264~ MW286265) and cmda (MT897897~ MT897898) were deposited in GenBank databases. BLAST analysis revealed that the representative isolates sequences shared 99.31%~99.65% similarities to the ITS sequence of Paramyrothecium breviseta (Accession Nos. NR_155670.1), 99.43% similarities to the β-tubulin sequence of P. breviseta (Accession Nos. KU846406.1), 98.98% similarities to the rpb2 sequence of P. breviseta (Accession Nos. KU846351.1), and 98.54%~98.71% similarities to the cmda sequence of P. breviseta (Accession Nos. KU846262.1). As it shown in the phylogenetic tree derived from combined ITS, β-tubulin, rpb2, and cmda gene sequences, the two representative isolates were clustered together with P. breviseta CBS 544.75 with 98% strong bootstrap support, which confirmed that P. breviseta is the causal agent of leaf spot of Coffea canephora. To our knowledge, this is the first report of a leaf spot disease caused by P. breviseta on C. canephora in China, which raised the caution that P. breviseta is also pathogenic to Coffea Arabica.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hai feng Sun ◽  
Ming yu Wei ◽  
Na Li ◽  
Yu Yan

Menispermum dauricum DC. is an ornamental plant used in traditional Chinese medicine. (Tang et al. 1992). In September 2019, a leaf spot on M. dauricum DC. was first found in a medicinal plant plantation in Harbin city (45.80°N, 126.53°E), Heilongjiang Province, China. The incidence was 76-90% on the 0.02 ha plantation. The initial symptoms were irregular black and brown spots on the leaves. The lesions expanded and coalesced, eventually leading to blight. Fresh leaf samples from ten M. dauricum plants with typical symptoms were collected. The areas of leaf between symptomatic and healthy tissue (5㎜×5㎜) were cut and surface disinfeated in 75% ethanol for 2 min, and with 1% HgCl2 for 1 min, and then rinsed three times with sterile water. Small lesion pieces were incubated on potato dextrose agar (PDA) for 7 days at 25℃, in the dark. Ten fungal isolates were obtained and transferred onto new PDA and potato carrot agar (PCA) plates to establish pure cultures. After 8 days, the colonies on PDA were 75-86㎜ in diameter, circular, with distinct concentric rings and a whitish aerial-mycelium margin, cottony, light gray to dark bluish brown. The colonies on the PCA were olive-green and bordered by white aerial hyphae. A total of 150 conidia were single or in short chains, obclavate, oval or inverted pear, light brown to brown, smooth or slightly spiny, with 1 to 6 transverse septa, 0 to 4 longitudinal or oblique septa, not narrow or slightly narrowed at the separation, 22.5-42.5×7.5-15.5㎛, and rostrate. Conidiophores were simple, erect, or ascending, dark brown, geniculate, septate, and with one or several conidial scars, 32.5-77.5×3.0-5.0㎛. Beaks were columnar or conical, 7.5-22.5×2.5-3.5㎛. Morphologically, all ten isolates were most similar to Alternaria alternata (Simmons 2007). For further identification of the fungus at the molecular level, internal transcribed spacer rDNA regions (ITS), RNA polymerase second largest subunit gene (RPB2) and Alternaria major allergen (Alt a 1) were amplified and sequenced using the primers ITS1 and ITS4, RPB2-5F2 and RPB2-7CR, Alt-for and Alt-rev (Woudenberg et al. 2015). The resulting sequences were deposited in GenBank (ITS: MT995193, MZ150794, RPB2: MT999483, MZ170963, Alt a 1: MT802122, MZ170962). BLAST search of these sequences showed 99%-100% homology with the ITS (FJ196306), RPB2 (KC584375) and Alt a 1 (KT315515) of the type strain CBS 916.96 of A. alternata, respectively. Thus, the fungus was identified as A. alternata based on the morphology and molecular analysis. For the pathogenicity test, spore suspensions (1×106 spores/mL) of the representative isolates BFG001 and BFG002 were sprayed onto the leaves of six healthy plants, separately. As a control, six plants were treated with sterile distilled water. The plants used in the experiment were covered with plastic bags and incubated at 25℃ for 10 days. Eight days after inoculation, irregular, slightly sunken black leaf spots appeared at the leaf margin. The experiment was repeated three times with the same method. The same fungus was successfully re-isolated from the leaves of the inoculated plants, fulfilling Koch’s postulates. No symptoms were observed on control plants. To our knowledge, this is the first report of leaf spot disease on M. dauricum DC. caused by A. alternata in the world. The appearance of leaf spot disease reduces the yield and quality of Chinese medicinal materials. This report has laid the foundation for the further research and control of leaf spot disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Xiang-rong Zheng ◽  
Fengmao Chen

American sweetgum (Liquidambar styraciflua L.) is a forest plant native to North America, which has been introduced into other countries due to its ornamental and medicinal values. In June 2019, symptoms of leaf spots on sweetgum were observed in a field (5 ha) located in Xuzhou, Jiangsu Province, China. On this field, approximately 45% of 1,000 trees showed the same symptoms. Symptoms were observed showing irregular or circular dark brown necrotic lesions approximately 5 to 15 mm in diameter with a yellowish margin on the leaves. To isolate the pathogen, diseased leaf sections (4×4mm) were excised from the margin of the lesion, surface-sterilized with 0.1% NaOCl for 90 s, rinsed 4 times in sterile distilled water, air dried and then transferred on potato dextrose agar (PDA) medium at 25°C in the dark. Pure cultures were obtained by monospore isolation after subculture. Ten purified isolates, named FXI to FXR, were transferred to fresh PDA and incubated as above to allow for morphological and molecular identification. After 7 days, the aerial mycelium was abundant, fluffy and exhibited white to greyish-green coloration. The conidia were dark brown or olive, solitary or produced in chains, obclavate, with 1 to 15 pseudosepta, and measured 45 to 200µm  10 to 18µm. Based on morphological features, these 10 isolates were identified as Corynespora cassiicola (Ellis et al. 1971). Genomic DNA of each isolate was extracted from mycelia using the cetyltrimethylammonium bromide (CTAB) method. The EF-1α gene and ITS region were amplified and sequenced with the primer pairs rDNA ITS primers (ITS4/ITS5) (White et al. 1990) and EF1-728F/EF-986R (Carbone et al.1999) respectively. The sequences were deposited in GenBank. BLAST analysis revealed that the ITS sequence had 99.66% similarity to C. cassiicola MH255527 and that the EF-1α sequence had 100% similarity to C. cassiicola KX429668A. maximum likelihood phylogenetic analysis based on EF-1α and ITS sequences using MEGA 7 revealed that ten isolates were placed in the same clade as C. cassiicola (Isolate: XQ3-1; accession numbers: MH572687 and MH569606, respectively) at 98% bootstrap support. Based on the morphological characteristics and phylogenetic analyses, all isolates were identified as C. cassiicola. For the pathogenicity test, a 10 µl conidial suspension (1×105 spores/ml) of each isolate was dripped onto healthy leaves of 2-year-old sweetgum potted seedlings respectively. Leaves inoculated with sterile water served as controls. Three plants (3 leaves per plant) were conducted for each treatment. The experiment was repeat twice. All seedlings were enclosed in plastic transparent incubators to maintain high relative humidity (90% to 100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. After 10 days, leaves inoculated with conidial suspension of each isolate showed symptoms of leaf spots, similar to those observed in the field. Control plants were remained healthy. In order to reisolate the pathogen, surface-sterilized and monosporic isolation was conducted as described above. The same fungus was reisolated from the lesions of symptomatic leaves, and its identity was confirmed by molecular and morphological approaches, thus fulfilling Koch’s postulates. Chlorothalonil and Boscalid can be used to effectively control Corynespora leaf spot (Chairin T et al.2017). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on L. styraciflua in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hang Ni ◽  
Wei-Liang Kong ◽  
Qiao-qiao Zhang ◽  
Xiao-Qin Wu

Chaenomeles sinensis is a shrub or small arbor of the genus Chaenomeles in Rosaceae, which is widely planted in China. It is a kind of garden ornamental plant and has high economic value. Since 2020, a leaf disease occurred on the foliage of C. sinensis at the campus of Nanjing Forestry University, Nanjing, China. After investigating, C. sinensis was found with leaf spot disease at a 100% infection rate, which causing gigantic ornamental loss. Leaf spots are round to irregular distributing on the leaves, in addition, the color of spots is brown. There are yellow halos on the edge of the lesion. Small leaf tissues (3 to 4 mm2) from lesion margins were surface sterilized with 75% ethanol for 30s and then rinsed with sterile dH2O for three times. Afterwards, placed on potato dextrose agar (PDA) at 25°C. Pure cultures were obtained by monosporic isolation, and a representative isolate (NJTJ.1) was obtained. When cultured on PDA, the colony of NJTJ.1 was white and cottony. On the reverse side, the color of colony nearly light yellow. The colony were placed in the liquid Carboxymethyl cellulose (CMC) medium. After culturing for 24h in a shaker at 25℃ and 150rmp/min, the spore liquid was taken by us. The conidia were one-celled, straight, hyaline, subcylindrical with rounded ends and measured 15.1 to 23.6× 5.4 to 7.9 µm (n =30). Appressoria were one-celled, brown, thick-walled, ellipsoidal, and measured 7.7 to 13.8 × 6.4 to 10.3 µm (n =30). The morphological characteristics of NJTJ.1 fitted with the description of the Colletotrichhum gloeosporioides complex (Weir et al., 2012). For accurate identification, the internal transcribed spacer (ITS), and the genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and chitin synthase (CHS-1) were amplified with primers ITS1/ITS4, GDF/GDR, ACT-512F/ACT-783R, and CHS-79F/CHS-345R (Zhu et al, 2019), respectively. The sequences were deposited in GenBank [Accession Nos.MT984264, MW030495 and MW030496 to MW030497 for NJTJ.1]. A Blast search of GenBank showed that ITS, GAPDH, ACT and CHS-1 sequences of NJTJ.1 were 99%, 99%, 100% and 100% identical to those of C. gloeosporioides (MH571757.1 ,KY995355.1 , MN058143.1 and MN313581.1). A neighbor-joining phylogenetic tree was generated by combining all sequenced loci in MEGA7. The isolate NJTJ.1 clustered in the C. gloeosporioides clade with 99% bootstrap support. The pathogenicity of the NJTJ.1 was verified both on detached and living leaves. The detached leaves were inoculated with 5-mm mycelial plugs cut from the edge of 6-day old cultures on PDA and 20 μL of spore suspension (106 conidia/mL) and each treatment had 5 replicates. Controls were treated with sterile dH2O. The inocula were placed at a distance of 2 to 3 cm on the leaves which were wounded with a sterile needle. All of them were placed in 20-cm dishes on wet filter paper at 25°C. After 5 days, all the inoculated points showed lesions which were similar to those outdoor observed. Whereas, controls were asymptomatic.At the same time, the plugs of C. gloeosporioides were inoculated on living leaves.After 7 days, the leaves which were inoculated also appeared lesions. This is the first report of C. gloeosporioides causing leaf blotch on Chaenomeles sinensis in China. These data will help develop effective strategies for managing this disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhang ◽  
Guangqiang Li ◽  
Dou Yang ◽  
Ruoling Zhang ◽  
Songze Wan

Mu oil tree (Vernicia montana) is an economically important woody oil plant, which is widely distributed in southern China. In mid-May 2020, a leaf spot disease was observed on the leaves of mu oil tree in Taihe County in Jiangxi Province, China (26°55′25.55″N, 114°49′5.85″E). The disease incidence was estimated to be above 40%. Initial symptoms were circular red-brown spots which were 1-2 mm in diameter, then enlarged with red-brown center. In later stages, the spots coalesced and formed large patches, and subsequently red-brown centers of lesions gradually dried and fell out, forming a “shot hole” appearance. To identify the pathogen, diseased leaves were collected from Taihe County. Leaf tissues (5 × 5 mm) were cut from the margins of typical symptomatic lesions, surface- sterilized in 75% ethanol for 30 seconds and 3% sodium hypochlorite for 60 seconds, then rinsed with sterile distilled water three times. Leaf pieces were placed on potato dextrose agar (PDA; 1.5%, Difco-BD Diagnostics) and incubated at 25 °C in the dark. Pure cultures were obtained from individual conidia by recovering single spores. On PDA, colonies were initially white and cottony. The mycelia then became pinkish to deep-pink with time at the center on the front side and pink on the reverse side. Colonies produced pale orange conidial masses after 9 days. Conidia were fusiform with acute ends, smooth-walled, hyaline, and measured 3.6–5.5 × 8.1–14.5 µm (4.5 ± 0.5 × 10.6 ± 1.0 µm, n = 100). The morphological characteristics of the isolate matched the descriptions of Colletotrichum acutatum complex (Damm et al. 2012). For molecular identification, the internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase (CHS-1), beta-tubulin 2 (TUB2), and actin (ACT) were sequenced using the primers ITS1/ITS4, GDF/GDR, CHS-79F/CHS-345R, T1/Bt2b, ACT-512F/ACT-783R, respectively (Weir et al. 2012). The obtained sequences were deposited into the GenBank [accession nos. MW584317 (ITS); MW656269 (GAPDH); MW656270 (TUB2); MW656268 (CHS-1); MW656267 (ACT)]. All the sequences showed 94 to 100% similarity with those of C. fioriniae. A neighbor-joining phylogenetic tree was generated by combining all the sequenced loci using MEGA7.0 (Kumar et al. 2016). The isolate TH-M4 clustered with C. fioriniae, having 99% bootstrap support. Base on the morphology and multi-gene phylogeny, isolate TH-M4 was identified as C. fioriniae (Damm et al. 2012). To confirm pathogenicity, 20 healthy leaves of 10 mu oil trees (3-year-old) grown outdoors were inoculated with a drop of spore suspension (106 conidia per mL) of the isolate TH-M4 in September 2020. Another 10 plants were inoculated with sterile water as the control. The leaves were wounded with a sterile toothpick. All the inoculated leaves were covered with black plastic bags to maintain humidity for 2 days. The pathogenicity test was repeated twice. The resulting symptoms were similar to those on the original infected plants, whereas the control leaves remained asymptomatic. The same fungus was re-isolated from the lesions on the inoculated plant, fulfilling Koch’s postulates. C. fioriniae has been recorded as anthracnose pathogen on Mahonia aquifolium (Garibaldi et al. 2020), Paeonia lactiflora (Park et al. 2020), Solanum melongena (Xu et al. 2020), and Juglans regia (Varjas et al. 2020). To our knowledge, this is the first report of C. fioriniae associated with leaf spot disease on mu oil tree in China. This study provided crucial information for epidemiologic studies and appropriate control strategies for this oil plant disease.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document