scholarly journals First Report of Alternaria tenuissima Causing Brown Spot Disease of Angelica dahurica in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Shipeng Han ◽  
Qing Wang ◽  
Shuo Zhang ◽  
Xi Jin ◽  
Zhi Min Hao ◽  
...  

Angelica dahurica (Fisch. ex Hoffm.) is an abundantly cultivated Chinese herbal medicine plant in China with about 4000 hectares grown, the annual production is up to 24,000 tons. The medicinal part of A. dahurica is its root, and mainly function for treat cold, headache, toothache, rhinitis, diabetes, etc. Besides, A. dahurica is also used as a spice in Asia. In September 2018, brown spot was observed on the leaves of A. dahurica in fields of Anguo City, Hebei Province, China. In the field investigated, the incidence of brown spot disease reached 15%. The infected leaves showed brown spots surrounded with pale yellow edge, resulting in withered of the whole leaf. It seriously endangers the growth of A. dahurica, reducing the yield and quality of medicinal materials, even leading to the death of plants. We isolated the pathogen from 10 leaves with same lesions, the small square leaf pieces of approximately 3 to 5 mm were obtained with the sterile scissors from the junction of infected and healthy tissues, sterilized with sodium hypochlorite (10%) for 1 min followed by washing in sterile water for 3 times, then incubated on potato dextrose agar (PDA) plates at 25°C for 4 days. The culture was transferred to new PDA plates and was cultivated in dark at 25°C for 10 days. A total of 3 species of fungi were isolated, and only one fungus species has been found to be able to cause the original pathological characteristics of A. dahurica leaves through the back-grafting experiment. The mycelium was black and began to sporulate after 8 days on PDA media by single spore separation. Multiple spores joined together to form spores chain. The spores were spindle-shaped, yellow to yellow brown, and size ranged from 45 to 55 × 15 to 20 µm (n=50), with zero to three longitudinal septa and one to five transverse septa. For pathogenicity tests, the spore suspension (3.5×105 spores/mL) were inoculated to healthy plants grown in experimental field, the test was repeated four times, and 10 leaves were inoculated in each repetition, and the sterile water was inoculated as the blank control. Inoculated leaves were covered with transparent plastic bags for 24 h to keep humidity. Nine days later, it was found that there were lesions on the leaves inoculated with the pathogen, and the traits were the same as those in the field, while the controls are healthy. The fungus was consistently isolated from the inoculated leaves. The similar isolates were re-isolated from the inoculated and infected leaves and identified as Alternaria tenuissima by DNA sequencing, fulfilling Koch’s postulates. Fungal genomic DNA was extracted from 7-day-old culture. PCR amplifications were performed using primers ITS1 / ITS4 and TEFF / TEFR respectively (Takahashi et al. 2006, Du 2008). The nucleotide sequence of PCR products, which have been deposited in Genebank under the accession numbers MN153514 and MN735428, showed 99.8%-100% identity with the corresponding sequences of A. tenuissima (MW194297 and MK415954). In order to further identify the pathogen species, we constructed a phylogenetic tree by combining TEF sequence and ITS sequence to distinguish the relationship between the pathogen and other minor species in the genus Alternaria, the isolate was clustered in the Alternaria clade. Therefore, the pathogen was identified as A. tenuissima based on the morphological characteristics and molecular identification. To our knowledge, this is the first report of A. tenuissima causing leaf spot on A. dahurica in China.

2020 ◽  
Vol 102 (4) ◽  
pp. 1309-1309
Author(s):  
X. B. Song ◽  
Y. P. Cui ◽  
A. T. Peng ◽  
J. F. Ling ◽  
X. Chen

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 582-582 ◽  
Author(s):  
L. Li ◽  
H. Pan ◽  
L. Deng ◽  
Z. P. Wang ◽  
D. W. Li ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1702-1702 ◽  
Author(s):  
G.-B. Lan ◽  
Z.-F. He ◽  
P.-G. Xi ◽  
Z.-D. Jiang

Pitahaya or dragon fruit [Hylocereus undatus (Haw.) Britton & Rose] is one of the most popular tropical fruits in the world. In China, it is widely planted in Guangdong, Guangxi, Hainan, and Taiwan. In July 2011, a new pitahaya disease was found in Conghua City and Yunfu City, Guangdong Province, China, characterized by many small, circular, reddish brown spots over the diseased stems. The spots continuously expanded, and ultimately formed large areas of canker on stems. It is similar to pitahaya stem canker disease caused by Neoscytalidium dimidiatum in Taiwan (1). Pieces of tissues were collected from the lesion margins. After surface disinfestations with 1% sodium hypochloride for 1 min and rinsing in sterile water three times, the diseased tissues were placed on potato dextrose agar medium plates (PDA) and incubated at 28°C for 3 days. A dark, fast-growing fungus was isolated from all samples. For identification, single-spore cultures were grown on PDA in an incubator at 28°C. After 5 days, colonies with dark gray to black aerial mycelium formed. The colonies produced abundant conidia that occurred in arthric chains in aerial mycelium. The conidia were disarticulating, cylindrical-truncate, oblong-obtuse to doliform, dark brown, zero- to one-septate, and averaged 7.56 (5.46 to 10.30) × 6.20 (3.79 to 8.93) μm. The teleomorph was never observed in PDA culture. Based on these characteristics, the fungus was identified as N. dimidiatum (Penz.) Crous & Slippers (2). The internal transcribed spacer (ITS) regions of rDNAs from two isolates were amplified by primers ITS1 and ITS4 (3), and then sequenced. Both sequences were completely identical and 579 bp long (GenBank Accession Nos. JX128103 and JX128104), with 99% identity to that of N. dimidiatum previously deposited (Accession No. HQ439174). To confirm its pathogenicity, six healthy detached stems of pitahaya designed as two replicates were inoculated by injecting 10 μl of conidia suspension (1 × 106 conidia per ml). Three stems were inoculated with sterile water as controls. The inoculated stems were kept in an incubator at 28°C in dark. The stems exhibited the same symptoms as described above after 10 days post inoculation, whereas no symptoms developed on the control stems. The fungus was reisolated from the lesions of the inoculated stem. These results indicated that N. dimidiatum was the pathogen of pitahaya brown spot disease. To our knowledge, this is the first report of brown spot caused by N. dimidiatum on H. undatus on the Chinese mainland. References: (1) M. F. Chuang et al. Plant Dis. 96:906, 2012. (2) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Yu Han Zhou

Monstera deliciosa Liebm is an ornamental foliage plant (Zhen et al. 2020De Lojo and De Benedetto 2014). In July of 2019, anthracnose lesions were observed on leaves of M. deliciosa cv. Duokong with 20% disease incidence of 100 plants at Guangdong Ocean University campus (21.17N,110.18E), Guangdong Province, China. Initially affected leaves showed chlorotic spots, which coalesced into larger irregular or circular lesions. The centers of spots were gray with a brown border surrounded by a yellow halo (Supplementary figure 1). Twenty diseased leaves were collected for pathogen isolation. Margins of diseased tissue was cut into 2 × 2 mm pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite (NaOCl) for 60 s, rinsed three times with sterile water before isolation. Potato dextrose agar (PDA) was used to culture pathogens at 28℃ in dark. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. Fourteen isolates were obtained from 20 leaves. Three single-spore isolates (PSC-1, PSC-2, and PSC-3) were obtained ,obtained, which were identical in morphology and molecular analysis (ITS). Therefore, the representative isolate PSC-1 was used for further study. The culture of isolate PSC-1 on PDA was initially white and later became cottony, light gray in 4 days, at 28 °C. Conidia were single celled, hyaline, cylindrical, clavate, and measured 13.2 to 18.3 µm × 3.3 to 6.5 µm (n = 30). Appressoria were elliptical or subglobose, dark brown, and ranged from 6.3 to 9.5 µm × 5.7 to 6.5 µm (n = 30). Morphological characteristics of isolate PSC-1 were consistent with the description of Colletotrichum siamense (Prihastuti et al. 2009; Sharma et al. 2013). DNA of the isolate PSC-1 was extracted for PCR sequencing using primers for the rDNA ITS (ITS1/ITS4), GAPDH (GDF1/GDR1), ACT (ACT-512F/ACT-783R), CAL (CL1C/CL2C), and TUB2 (βT2a/βT2b) (Weir et al. 2012). Analysis of the ITS (accession no. MN243535), GAPDH (MN243538), ACT (MN512640), CAL (MT163731), and TUB2 (MN512643) sequences revealed a 97-100% identity with the corresponding ITS (JX010161), GAPDH (JX010002), ACT (FJ907423), CAL (JX009714) and TUB2 (KP703502) sequences of C. siamense in GenBank. A phylogenetic tree was generated based on the concatenated sequences of ITS, GAPDH, ACT, CAL, and TUB2 which clustered the isolate PSC-1 with C. siamense the type strain ICMP 18578 (Supplementary figure 2). Based on morphological characteristics and phylogenetic analysis, the isolate PSC-1 associated with anthracnose of M. deliciosa was identified as C. siamense. Pathogenicity test was performed in a greenhouse at 24 to 30oC with 80% relative humidity. Ten healthy plants of cv. Duokong (3-month-old) were grown in pots with one plant in each pot. Five plants were inoculated by spraying a spore suspension (105 spores ml-1) of the isolate PSC-1 onto leaves until runoff, and five plants were sprayed with sterile water as controls. The test was conducted three times. Anthracnose lesions as earlier were observed on the leaves after two weeks, whereas control plants remained symptomless. The pathogen re-isolated from all inoculated leaves was identical to the isolate PSC-1 by morphology and ITS analysis, but not from control plants. C. gloeosporioides has been reported to cause anthracnose of M. deliciosa (Katakam, et al. 2017). To the best of our knowledge, this is the first report of C. siamense causing anthracnose on M. deliciosa in ChinaC. siamense causes anthracnose on a variety of plant hosts, but not including M. deliciosa (Yanan, et al. 2019). To the best of our knowledge, this is the first report of C. siamense causing anthracnose on M. deliciosa, which provides a basis for focusing on the management of the disease in future.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1792 ◽  
Author(s):  
F. Liu ◽  
J.-B. Wu ◽  
R.-L. Zhan ◽  
X.-C. Ou

Food Research ◽  
2020 ◽  
Vol 4 (S5) ◽  
pp. 138-141
Author(s):  
I.S. Mohd Anuar ◽  
K.A. Ku Sulong ◽  
H. Abdul Ghani ◽  
M.Z. Wahab

Bipolaris oryzae causes brown spot disease which is one of the most devastating diseases in rice. Nowadays, biological methods are effective controls which need to be developed in order to use less chemical control. Therefore, the objectives of the present study were to characterize the B. oryzae as a biocontrol agent and to measure the performance of encapsulated T. harzianum in controlling brown spot disease. Bipolaris oryzae was characterized based on morphological characteristics and alginate encapsulation was produced from conidial suspension by adding sodium alginate and calcium chloride which results in small beads. Alginate formulation was applied to the rice seedling to find the result on this formulation. As a result, the application of encapsulation T. harzianum to control brown spot disease showed the inhibition of the disease. As a conclusion, this can be an alternative method to control brown spot disease which will render easier application to rice plantation in the future.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 159-159
Author(s):  
X. D. Peng ◽  
S. L. Huang ◽  
S. H. Lin

In October 2012, a brown spot disease was found on corn kernels during a field survey in Nanyang city (33°01′ N, 112°29′ E), China. The incidences of affected ears and kernels were 2 to 10% (n = 600) and 0.08 to 0.4% (n = 25,000), respectively. Symptoms first appeared as circular or irregular brown spots on the endosperm. These spots subsequently enlarged or coalesced, resulting in the formation of a large light-brown or light-yellow irregular speckle commonly surrounded by a dark-brown edge. Pure fungal cultures with similar morphological characteristics were obtained from surface-disinfected symptomatic kernels using a conventional method for isolation of culturable microbes. The isolated fungal cultures were purified by single-spore isolation (3). A representative isolate F1 was randomly selected, used for pathogenicity tests, and identified using morphological and molecular methods. Colonies on PDA were circular with abundant villiform aerial mycelia. The color of colonies was white-gray at first and turned to light yellow or became ochraceous after 3 days of incubation at 28°C. Hyphae were hyaline and less septate, with rectangular branches. Sporangiophores were erect and unbranched or branched, with globose sporangia formed on their tips. Sporangiospores were elliptical to round, 3.6 to 7.3 × 1.6 to 3.7 μm (n = 100) in size. Two gene regions were amplified for multilocus sequence typing. The D1/D2 region of the nuclear large subunit ribosomal RNA gene (nucLSU) was amplified with primers NL1 and NL4 and the rDNA internal transcribed spacer (ITS) with primers ITS1 and ITS4. PCR products were purified using an Axygen nucleic acid purification kit for sequencing. Both rDNA D1/D2 and rDNA-ITS sequences were submitted to GenBank with accession numbers KM093834 and KM203872, respectively. The isolate F1 showed 98% identity with two isolates of Mucor irregularis (KC524427 and KC461926) in rDNA-ITS sequences and 99% identity with multiple isolates (JX976221, JX976203, and JX976219) of M. irregularis in rDNA D1/D2 sequences. Pathogenicity tests of isolate F1 were conducted based on Koch's postulates. Thirty kernels of fresh ears (milk stage) were pricked by sterilized toothpicks and separately inoculated with a sporangiospore suspension (1 × 106 spores/ml) and 5-day-old mycelial plugs (5 × 5 mm) of isolate F1. Kernels on ears that were inoculated with sterilized water and pure PDA plugs were separately used as controls. After 7 days of incubation, brown spot symptoms developed on the F1-inoculated kernels, which were similar to those observed on the naturally infected ears from the field samples. The control ears remained symptomless during the inoculation tests. Fungal cultures showing the same morphological characteristics as those of isolate F1 were consistently recovered from the diseased cobs inoculated by isolate F1, indicating that M. irregularis was responsible for corn kernel brown spot disease. M. irregularis was reported as a pathogen causing human skin diseases in China (5), America (1), and India (2) and as a phytopathogen causing fruit rot on durian (4). This is the first report of M. irregularis causing corn kernel brown spot disease in China. References: (1) M. M. Abuali et al. J. Clin. Microbiol. 47:4176, 2009. (2) B. M. Hemashettar et al. J. Clin. Microbiol. 49:2372, 2011. (3) S. L. Huang and K. Kohmoto. Bull. Fac. Agric., Tottori Univ. 44:1, 1991. (4) W. F. Wang et al. Plant Quarant. l23:60, 2009. (5) Y. Zhao et al. Mycopathologia 168:243, 2009.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 464-464 ◽  
Author(s):  
Y. S. Luan ◽  
L. Feng ◽  
X. Y. Xia ◽  
L. J. An

During September 2006, disease symptoms were observed on mature highbush blueberry (Vaccinium corymbosum L.) cvs. Bluecrop and Covoille in a blueberry commercial field in Dalian, China. The maximum and minimum rainfalls in June to September are 3,111.9 and 1,745.6 ml, respectively. The highest temperature during the summer is 35.3°C and relative humidity may achieve 90%. Circular to irregular, light brown-to-gray leaf spots with brownish red borders, initially 3 to 7 mm in diameter, enlarged and coalesced. Reddish, circular spots appeared on stems, developing small, insignificant cankers. A fungus was recovered on potato dextrose agar (PDA, pH nature) from the margin of necrotic leaf spots. Morphological traits of the strain that developed from a single-spore culture were as follows: colonies were regular and flat, with a rough upper surface that peripherally was olive-green with a black center and dull white spots; short conidiophores arising singly and measuring 81.6 to 163.2 × 4.1 to 8.2 μm; conidia was abundant, ovoid, and obclavate muriformly septate, which horizontal and vertical septations varied from 1 to 6 and 0 to 2, respectively, and its size varied from 26 to 48.8 × 9.7 to 16.3 μm with an average beak length of 9.6 μm, and sporulation pattern is budding. Conidia derived from conidiophores. Koch's postulates were fulfilled for the isolates by spray inoculating two healthy mature plants with 2 × 105 conidia per ml homogenized in sterile water. As a control, two plants were sprayed with sterile water. Plants were placed inside plastic bags to maintain humidity and incubated in a growth chamber at 26°C under fluorescent light for 14 h and 20°C in darkness for 10 h. After 2 days, the plastic bags were removed and plants were maintained under the same conditions for 30 days. Symptoms on inoculated plants were similar to those previously observed. Symptoms were not observed on control plants. Cultures isolated from inoculated plants had the same morphological traits as those that were isolated previously from the field plants. The morphological descriptions and measurements were similar to Alternaria tenuissima (2). The 5.8S subunit and flanking internal transcribed spacers (ITS1 and ITS2) of rDNA and partial cds histone gene were amplified from DNA extracted from single-spore cultures using the ITS1/ITS4 and H3-1a/H3-1b primers, respectively, and sequenced (GenBank Accession No. EF031053) (1,3). The ITS sequence was identical to the ITS regions of A. tenuissima strain EGS34-015 (100%; GenBank Accession No. AY751455), the partial cds histone gene sequence was similar to A. tenuissima isolate MA6 (99%; GenBank Accession No. AF404634). The morphology, secondary conidiation, and sequences of ITS and partial cds histone gene identify the causal fungus as A. tenuissima. To our knowledge, this is the first report on the presence of A. tenuissima affecting blueberry plants in China. References: (1) J. C. Kang et al. Mycol. Res. 106:1151, 2002. (2) E. G. Simmons. Mycotaxon 70:325, 1999. (3) T. J. White et al. Pages 315–322 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhou ◽  
Rou Ye ◽  
Qin Ying ◽  
Yang Zhang ◽  
Linping Zhang

Dalbergia hupeana is a kind of wood and medicinal tree widely distributed in southern China. Since 2019, a leaf spot disease was observed on the leaves of D. hupeana in Gangxia village, Luoting town in Jiangxi Province, China (28°52′53″N, 115°44′58″E). The disease incidence was estimated to be above 50%. The symptoms began as small spots that gradually expanded, developing a brown central and dark brown to black margin. The spots ranged from 4 to 6 mm in diameter. Leaf pieces (5 × 5 mm) from lesion margins were surface sterilized in 70% ethanol for 30 s followed by 2% NaOCl for 1 min and then rinsed three times with sterile water. Tissues were placed on potato dextrose agar (PDA) and incubated at 25°C. Pure cultures were obtained by monosporic isolation. Fifteen strains with similar morphological characterizations were isolated, and three representative isolates (JHT-1, JHT-2, and JHT-3) were chosen and used for further study. Colonies on PDA of three isolates were grayish-green with white edges and dark green on the reverse side. Conidia were transparent, cylindrical with rounded ends, and measured 3.6-5.3 µm × 9.5-15.2 µm (3.7 ± 0.2 × 13.6 ± 1.1 µm, n = 100). Appressoria were dark brown, globose or subcylindrical, and ranged from 6.2-9.2 µm× 5.1-6.8 µm (7.9 ± 0.4 × 5.9 ± 0.3 µm, n=100). The morphological characteristics of the three strains were consistent with the description of species in the Colletotrichum gloeosporioides complex (Weir et al. 2012). The internal transcribed spacer (ITS) regions, actin (ACT), calmodulin (CAL), chitin synthase (CHS-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin 2 (TUB2) were amplified from genomic DNA for the three isolates using primers ITS1/ITS4, ACT-512F/ACT-783R, CL1/CL2, CHS-79F/CHS-345R, GDF/GDR and T1/Bt2b (Weir et al. 2012), respectively. The sequences were deposited in GenBank (Accession Nos. MZ482016 - MZ482018 for ITS; MZ463636 - MZ463638 for ACT; MZ463648- MZ463650 for CAL; MZ463639 - MZ463641 for CHS-1; MZ463642 - MZ463644 for GAPDH; MZ463645 - MZ463647 for TUB2). A neighbor-joining phylogenetic tree was constructed with MEGA 7.0 using the concatenation of multiple sequences (ITS, ACT, GAPDH, TUB2, CHS-1, CAL) (Kumar et al. 2016). According to the phylogenetic tree, three isolates fall within the Colletotrichum fructicola clade (boot support 99%). Based on morphological characteristics and phylogenetic analysis, three isolates were identified as C. fructicola. The pathogenicity of three isolates was conducted on two-yr-old seedlings (30 cm tall) of D. hupeana. Healthy leaves were wounded with a sterile needle and then inoculated with 10 μL spore suspension (106 conidia per mL). Controls were treated with sterile water. All plants were covered with transparent plastic bags and incubated in a greenhouse at 28°C with a 12 h photoperiod (relative humidity > 80%). Within five days, the inoculated leaves developed lesions similar to those observed in the field, whereas controls were asymptomatic. The experiments repeated three times showed similar results. The infection rate was 100%. C. fructicola was re-isolated from the lesions, whereas no fungus was isolated from control leaves. C. fructicola can cause leaf diseases in a variety of hosts, including Aesculus chinensis (Sun et al. 2020), Peucedanum praeruptorum (Ma et al. 2020), and Mandevilla × amabilis (Sun et al. 2020). C. brevisporum and C. gigasporum were also reported to infect Dalbergia odorifera (Chen et al. 2021; Wan et al. 2018). However, This is the first report of C. fructicola associated with leaf spot disease on D. hupeana in China. These results will help to develop effective strategies for appropriately managing this newly emerging disease.


Sign in / Sign up

Export Citation Format

Share Document