angelica dahurica
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Rong Huang ◽  
Yinrong Liu ◽  
Jianling Chen ◽  
Zuyu Lu ◽  
Jiajia Wang ◽  
...  

Abstract Background: Angelica dahurica, belonging to the Apiaceae family, whose dry root is a famous traditional Chinese medicine named as “Bai zhi”. There are two cultivars (A. dahurica cv. ‘Hangbaizhi’ and A. dahurica cv. ‘Qibaizhi’), which have been domesticated for thousands of years. Long term artificial selection has led to great changes in root phenotypes of the two cultivars, and also decreased their adaptability to environment. We proposed hypothesis that the cultivars may lose some genetic diversity and highly differentiate from wild A. dahurica during the domestication process. However, few studies have been carried out on how domestication affects the genetic variation of this species. Here, we accessed the levels of genetic variation and differentiation within and between wild A. dahurica and its cultivars using 12 SSR markers. Results: The results revealed that the genetic diversity of the cultivars was much lower than that of wild A. dahurica, and A. dahurica cv. ‘Qibaizhi’ had lower genetic diversity compared to A. dahurica cv. ‘Hangbaizhi’. AMOVA analysis showed significant genetic differentiation between the wild and cultivated A. dahurica, and between A. dahurica cv. ‘Hangbaizhi’ and A. dahurica cv. ‘Qibaizhi’. The results of Bayesian, UPGMA, NJ and PcoA clustering analysis indicated that all 15 populations were assigned to two genetic clusters corresponding to the wild and cultivated resources. Bayesian clustering analysis further divided the cultivated resources into two sub-clusters corresponding to the two cultivars. Conclusions:Our study suggests that domestication process is likely the major factor resulting in the loss of genetic diversity in cultivated A. dahurica and significant genetic differentiation from the wild resources due to founder effect and/or artificially directional selections. This large-scale analysis of population genetics could provide valuable information for genetic resources conservation and breeding programs of Angelica dahurica.


Separations ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Ting Wang ◽  
Qian Li

In this study, a simple and environmentally friendly method was developed for the extraction of seven active coumarins from Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav.(A. dahurica) based on deep eutectic solvents (DESs). Among the 16 kinds of DES based on choline chloride, the DES system with the molar ratio of choline chloride, citric acid, and water as 1:1:2 had the best extraction effect. Ultrasonic-assisted response surface methodology (RSM) was used to investigate the optimal extraction scheme. The results showed that the optimal extraction conditions were a liquid–solid ratio of 10:1 (mL/g), an extraction time of 50 min, an extraction temperature of 59.85 °C, and a moisture content of 49.28%. Under these conditions, the extraction yield reached 1.18%. In addition, scanning electron microscopy (SEM) was used to observe the degree of powder fragmentation before and after extraction with different solvents. The cells of A. dahurica medicinal materials obtained by DES ultrasonic-assisted treatment were the most seriously broken, indicating that DES had the highest efficiency in the treatment of A. dahurica. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) DPPH radical scavenging model was used to evaluate the biological activity of DES extract. The results showed that DES extract had better scavenging ability of DPPH free radical. Therefore, DES is a green solvent suitable for extracting coumarin compounds of A. dahurica, with great potential to replace organic solvents.


2021 ◽  
Vol 4 (12) ◽  
pp. 287
Author(s):  
Ryo Okada ◽  
Hazuki Abe ◽  
Tetsuya Okuyama ◽  
Yuto Nishidono ◽  
Toshinari Ishii ◽  
...  

Background: The roots of Angelica dahurica Bentham et Hooker filius ex Franchet et Savatier (Apiaceae) have traditionally been used for inflammatory skin diseases. A. dahurica roots (Byakushi) contain furanocoumarins, such as imperatorin and byakangelicin. To elucidate which constituents are responsible for the anti-inflammatory effects, we evaluated the potency of crude A. dahurica root extract fractions by monitoring the production of the inflammatory mediator nitric oxide (NO) in hepatocytes.Methods: The dried roots of A. dahurica were collected in South Korea and extracted with methanol. The resulting extract was fractionated into ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions. Primary cultured rat hepatocytes were treated with interleukin (IL)-1β and each fraction for 8 h, and then the NO production and lactate dehydrogenase activity in the medium were measured. The expression of inducible nitric oxide synthase (iNOS) was detected by Western blotting, and its mRNA expression level was measured by quantitative reverse transcription-polymerase chain reaction.Results: Among the three fractions, the EtOAc-soluble fraction markedly suppressed NO production without showing cytotoxicity and decreased iNOS expression in hepatocytes. From this hydrophobic fraction, we isolated five furanocoumarins: isoimperatorin, imperatorin, phellopterin, oxypeucedanin, and oxypeucedanin methanolate. Phellopterin and oxypeucedanin methanolate significantly suppressed NO production and reduced the mRNA expression of iNOS and tumor necrosis factor α. In contrast, the other three constituents did not affect NO production. Comparison of their chemical structures suggests that a methoxy group at carbon 5 and a side chain at carbon 8 in the furanocoumarin skeleton may be essential for NO production suppression.Conclusion: These data imply that phellopterin and oxypeucedanin methanolate, which are hydrophobic furanocoumarins, may contribute to the anti-inflammatory effects of A. dahurica roots by suppressing iNOS gene expression.Keywords: Inflammation, nitric oxide, hepatocyte, coumarin, Kampo medicine


Plant Disease ◽  
2021 ◽  
Author(s):  
Shipeng Han ◽  
Qing Wang ◽  
Shuo Zhang ◽  
Xi Jin ◽  
Zhi Min Hao ◽  
...  

Angelica dahurica (Fisch. ex Hoffm.) is an abundantly cultivated Chinese herbal medicine plant in China with about 4000 hectares grown, the annual production is up to 24,000 tons. The medicinal part of A. dahurica is its root, and mainly function for treat cold, headache, toothache, rhinitis, diabetes, etc. Besides, A. dahurica is also used as a spice in Asia. In September 2018, brown spot was observed on the leaves of A. dahurica in fields of Anguo City, Hebei Province, China. In the field investigated, the incidence of brown spot disease reached 15%. The infected leaves showed brown spots surrounded with pale yellow edge, resulting in withered of the whole leaf. It seriously endangers the growth of A. dahurica, reducing the yield and quality of medicinal materials, even leading to the death of plants. We isolated the pathogen from 10 leaves with same lesions, the small square leaf pieces of approximately 3 to 5 mm were obtained with the sterile scissors from the junction of infected and healthy tissues, sterilized with sodium hypochlorite (10%) for 1 min followed by washing in sterile water for 3 times, then incubated on potato dextrose agar (PDA) plates at 25°C for 4 days. The culture was transferred to new PDA plates and was cultivated in dark at 25°C for 10 days. A total of 3 species of fungi were isolated, and only one fungus species has been found to be able to cause the original pathological characteristics of A. dahurica leaves through the back-grafting experiment. The mycelium was black and began to sporulate after 8 days on PDA media by single spore separation. Multiple spores joined together to form spores chain. The spores were spindle-shaped, yellow to yellow brown, and size ranged from 45 to 55 × 15 to 20 µm (n=50), with zero to three longitudinal septa and one to five transverse septa. For pathogenicity tests, the spore suspension (3.5×105 spores/mL) were inoculated to healthy plants grown in experimental field, the test was repeated four times, and 10 leaves were inoculated in each repetition, and the sterile water was inoculated as the blank control. Inoculated leaves were covered with transparent plastic bags for 24 h to keep humidity. Nine days later, it was found that there were lesions on the leaves inoculated with the pathogen, and the traits were the same as those in the field, while the controls are healthy. The fungus was consistently isolated from the inoculated leaves. The similar isolates were re-isolated from the inoculated and infected leaves and identified as Alternaria tenuissima by DNA sequencing, fulfilling Koch’s postulates. Fungal genomic DNA was extracted from 7-day-old culture. PCR amplifications were performed using primers ITS1 / ITS4 and TEFF / TEFR respectively (Takahashi et al. 2006, Du 2008). The nucleotide sequence of PCR products, which have been deposited in Genebank under the accession numbers MN153514 and MN735428, showed 99.8%-100% identity with the corresponding sequences of A. tenuissima (MW194297 and MK415954). In order to further identify the pathogen species, we constructed a phylogenetic tree by combining TEF sequence and ITS sequence to distinguish the relationship between the pathogen and other minor species in the genus Alternaria, the isolate was clustered in the Alternaria clade. Therefore, the pathogen was identified as A. tenuissima based on the morphological characteristics and molecular identification. To our knowledge, this is the first report of A. tenuissima causing leaf spot on A. dahurica in China.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1577
Author(s):  
Javad Mottaghipisheh

The present review comprehensively gathered phytochemical, bioactivity, and pharmacokinetic reports on a linear furanocoumarin, namely oxypeucedanin. Oxypeucedanin (OP), which structurally contains an epoxide ring, has been majorly isolated from ethyl acetate-soluble partitions of several genera, particularly Angelica, Ferulago, and Prangos of the Apiaceae family; and Citrus, belonging to the Rutaceae family. The methanolic extract of Angelica dahurica roots has been analytically characterized as the richest natural OP source. This naturally occurring secondary metabolite has been described to possess potent antiproliferative, cytotoxic, anti-influenza, and antiallergic activities, as assessed in preclinical studies. In order to explore potential drug candidates, oxypeucedanin, its derivatives, and semi-synthetically optimized analogues can be considered for the complementary assessments of biological assays.


Sign in / Sign up

Export Citation Format

Share Document