scholarly journals First Report of Stemphylium solani as the Causal Agent of a Leaf Spot on Greenhouse Cucumber

Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 287-287 ◽  
Author(s):  
D. J. Vakalounakis ◽  
E. A. Markakis

During the 2011 to 2012 crop season, a severe leaf spot disease of cucumber (Cucumis sativus) cv. Cadiz was noticed on crops in some greenhouses in the Goudouras area, Lasithi, Crete, Greece. Symptoms appeared in late winter, mainly on the leaves of the middle and upper part of the plants. Initially, small necrotic pinpoint lesions with white centers, surrounded by chlorotic halos, 1 to 3 mm in diameter, appeared on the upper leaf surfaces, and these progressively enlarged to spots that could coalesce to form nearly circular lesions up to 2 cm or more in diameter. Stemphylium-like fructifications appeared on necrotic tissue of older lesions. Severely affected leaves became chlorotic and died. No other part of the plant was affected. Small tissue pieces from the edges of lesions were surface disinfected in 0.5% NaClO for 5 min, rinsed in sterile distilled water, plated on acidified potato dextrose agar and incubated at 22 ± 0.5°C with a 12-h photoperiod. Stemphylium sp. was consistently isolated from diseased samples. Colonies showed a typical septate mycelium with the young hyphae subhyaline and gradually became greyish green to dark brown with age. Conidiophores were subhyaline to light brown, 3- to 10-septate, up to 200 μm in length, and 4 to 7 μm in width, with apical cell slightly to distinctly swollen, bearing a single spore at the apex. Conidia were muriform, mostly oblong to ovoid, but occasionally nearly globose, subhyline to variant shades of brown, mostly constricted at the median septum, 22.6 ± 6.22 (11.9 to 36.9) μm in length, and 15.1 ± 2.85 (8.3 to 22.6) μm in width, with 1 to 8 transverse and 0 to 5 longitudinal septa. DNA from a representative single-spore isolate was extracted and the internal transcribed spacer region (ITS) of ribosomal DNA (rDNA) was amplified using the universal primers ITS5 and ITS4. The PCR product was sequenced and deposited in GenBank (Accession No. JX481911). On the basis of morphological characteristics (3) and a BLAST search with 100% identity to the published ITS sequence of a S. solani isolate in GenBank (EF0767501), the fungus was identified as S. solani. Pathogenicity tests were performed by spraying a conidial suspension (105 conidia ml–1) on healthy cucumber (cv. Knossos), melon (C. melo, cv. Galia), watermelon (Citrullus lanatus cv. Crimson sweet), pumpkin (Cucurbita pepo, cv. Rigas), and sponge gourd (Luffa aegyptiaca, local variety) plants, at the 5-true-leaf stage. Disease symptoms appeared on cucumber and melon only, which were similar to those observed under natural infection conditions on cucumber. S. solani was consistently reisolated from artificially infected cucumber and melon tissues, thus confirming Koch's postulates. The pathogenicity test was repeated with similar results. In 1918, a report of a Stemphylium leaf spot of cucumber in Indiana and Ohio was attributed to Stemphylium cucurbitacearum Osner (4), but that pathogen has since been reclassified as Leandria momordicae Rangel (2). That disease was later reported from Florida (1) and net spot was suggested as a common name for that disease. For the disease reported here, we suggest the name Stemphylium leaf spot. This is the first report of a disease of cucumber caused by a species of Stemphylium. References: (1) C. H. Blazquez. Plant Dis. 67:534, 1983. (2) P. Holliday. Page 243 in: A Dictionary of Plant Pathology. Cambridge University Press, Cambridge, UK, 1998. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) G. A. Osner. J. Agric. Res. 13:295, 1918.

Plant Disease ◽  
2021 ◽  
Author(s):  
Md Aktaruzzaman ◽  
Tania Afroz ◽  
Hyo-Won Choi ◽  
Byung Sup Kim

Perilla (Perilla frutescens var. japonica), a member of the family Labiatae, is an annual herbaceous plant native to Asia. Its fresh leaves are directly consumed and its seeds are used for cooking oil. In July 2018, leaf spots symptoms were observed in an experimental field at Gangneung-Wonju National University, Gangneung, Gangwon province, Korea. Approximately 30% of the perilla plants growing in an area of about 0.1 ha were affected. Small, circular to oval, necrotic spots with yellow borders were scattered across upper leaves. Masses of white spores were observed on the leaf underside. Ten small pieces of tissue were removed from the lesion margins of the lesions, surface disinfected with NaOCl (1% v/v) for 30 s, and then rinsed three times with distilled water for 60 s. The tissue pieces were then placed on potato dextrose agar (PDA) and incubated at 25°C for 7 days. Five single spore isolates were obtained and cultured on PDA. The fungus was slow-growing and produced 30-50 mm diameter, whitish colonies on PDA when incubated at 25ºC for 15 days. Conidia (n= 50) ranged from 5.5 to 21.3 × 3.5 to 5.8 μm, were catenate, in simple or branched chains, ellipsoid-ovoid, fusiform, and old conidia sometimes had 1 to 3 conspicuous hila. Conidiophores (n= 10) were 21.3 to 125.8 × 1.3 to 3.6 μm in size, unbranched, straight or flexuous, and hyaline. The morphological characteristics of five isolates were similar. Morphological characteristics were consistent with those described for Ramularia coleosporii (Braun, 1998). Two representative isolates (PLS 001 & PLS003) were deposited in the Korean Agricultural Culture Collection (KACC48670 & KACC 48671). For molecular identification, a multi-locus sequence analysis was conducted. The internal transcribed spacer (ITS) regions of the rDNA, partial actin (ACT) gene and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were amplified using primer sets ITS1/4, ACT-512F/ACT-783R and gpd1/gpd2, respectively (Videira et al. 2016). Sequences obtained from each of the three loci for isolate PLS001 and PLS003 were deposited in GenBank with accession numbers MH974744, MW470869 (ITS); MW470867, MW470870 (ACT); and MW470868, MW470871 (GAPDH), respectively. Sequences for all three genes exhibited 100% identity with R. coleosporii, GenBank accession nos. GU214692 (ITS), KX287643 (ACT), and 288200 (GAPDH) for both isolates. A multi-locus phylogenetic tree, constructed by the neighbor-joining method with closely related reference sequences downloaded from the GenBank database and these two isolates demonstrated alignment with R. coleosporii. To confirm pathogenicity, 150 mL of a conidial suspension (2 × 105 spores per mL) was sprayed on five, 45 days old perilla plants. An additional five plants, to serve as controls, were sprayed with sterile water. All plants were placed in a humidity chamber (>90% relative humidity) at 25°C for 48 h after inoculation and then placed in a greenhouse at 22/28°C (night/day). After 15 days leaf spot symptoms, similar to the original symptoms, developed on the leaves of the inoculated plants, whereas the control plants remained symptomless. The pathogenicity test was repeated twice with similar results. A fungus was re-isolated from the leaf lesions on the inoculated plants which exhibited the same morphological characteristics as the original isolates, fulfilling Koch’s postulates. R. coleosporii has been reported as a hyperparasite on the rust fungus Coleosporium plumeriae in India & Thailand and also as a pathogen infecting leaves of Campanula rapunculoides in Armenia, Clematis gouriana in Taiwan, Ipomoea batatas in Puerto Rico, and Perilla frutescens var. acuta in China (Baiswar et al. 2015; Farr and Rossman 2021). To the best of our knowledge, this is the first report of R. coleosporii causing leaf spot on P. frutescens var. japonica in Korea. This disease poses a threat to production and management strategies to minimize leaf spot should be developed.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 419-419 ◽  
Author(s):  
C. K. Phan ◽  
J. G. Wei ◽  
F. Liu ◽  
B. S. Chen ◽  
J. T. Luo ◽  
...  

Eucalyptus is widely planted in the tropics and subtropics, and it has become an important cash crop in Southern China because of its fast-growing nature. In the Guangxi Province of southern China, Eucalyptus is produced on approximately 2 million ha, and two dominant asexual clones, Guanglin No. 9 (E. grandis × E. urophylla) and DH3229 (E. urophylla × E. grandis), are grown. Diseases are an increasing threat to Eucalyptus production in Guangxi since vast areas are monocultured with this plant. In June 2013, a leaf spot disease was observed in eight out of 14 regions in the province on a total of approximately 0.08 million ha of Eucalyptus. Initially, the lesions appeared as water-soaked dots on leaves, which then became circular or irregular shaped with central gray-brown necrotic lesions and dark red-brown margins. The size of leaf spots ranged between 1 and 3 mm in diameter. The main vein or small veins adjacent to the spots were dark. The lesions expanded rapidly during rainy days, producing reproductive structures. In severe cases, the spots coalesced and formed large irregular necrotic areas followed by defoliation. The causal fungus was isolated from diseased leaves. Briefly, the affected leaves were washed with running tap water, sterilized with 75% ethanol (30 s) and 0.1% mercuric dichloride (3 min), and then rinsed three times with sterilized water. Small segments (0.5 to 0.6 cm2) were cut from the leading edge of the lesions and plated on PDA. The plates were incubated at 25°C for 7 to 10 days. When mycelial growth and spores were observed, a single-spore culture was placed on PDA and grown in the dark at 25°C for 10 days. A pathogenicity test was done by spraying a conidial suspension (5 × 105 conidia ml–1) of isolated fungus onto 30 3-month-old leaves of Guanglin No. 9 seedlings. The plants were covered with plain plastic sheets for 7 days to keep the humidity high. Lesions similar to those observed in the forests were observed on the inoculated leaves 7 to 10 days after incubation. The same fungus was re-isolated. Leaves of control plants (sprayed with sterilized water) were disease free. Conidiophores of the fungus were straight to slightly curved, erect, unbranched, septate, and pale to light brown. Conidia were formed in chains or singly with 4 to 15 pseudosepta, which were oblong oval to cylindrical, subhyaline to pale olivaceous brown, straight to curved, 14.5 to 92.3 μm long, and 3.5 to 7.1 μm wide. The fungus was morphologically identified as Corynespora cassiicola (1). DNA of the isolate was extracted, and the internal transcribed spacer (ITS) region (which included ITS 1, 5.8S rDNA gene of rDNA, and ITS 2) was amplified with primers ITS5 and ITS4. 529 base pair (bp) of PCR product was obtained and sequenced. The sequence was compared by BLAST search to the GenBank database and showed 99% similarity to C. cassiicola (Accession No. JX087447). Our sequence was deposited into GenBank (KF669890). The biological characters of the fungus were tested. Its minimum and maximum growth temperatures on PDA were 7 and 37°C with an optimum range of 25 to 30°C. At 25°C in 100% humidity, 90% of conidia germinated after 20 h. The optimum pH for germination was 5 to 8, and the lethal temperature of conidia was 55°C. C. cassiicola has been reported causing leaf blight on Eucalyptus in India and Brazil (2,3) and causing leaf spot on Akebia trifoliate in Guangxi (4). This is the first report of this disease on Eucalyptus in China. References: (1) M. B. Ellis and P. Holliday. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 303. Commonwealth Mycological Institute, Kew, Surrey, UK, 1971. (2) B. P. Reis, et al. New Dis. Rep. 29:7, 2014. (3) K. I. Wilson and L. R. Devi. Ind. Phytopathol. 19:393, 1966. (4) Y. F. Ye et al. Plant Dis. 97:1659, 2013.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 226-226
Author(s):  
Y. B. Duan ◽  
Z. Z. Yu ◽  
Y. B. Kang

Tree peony (Paeonia suffruticosa Andrews), a perennial ligneous deciduous shrub in the Paeoniaceae family, is known for its beautiful and charming flowers. It is regarded as the flower symbol of China and is cultivated throughout the country. In August 2008, a previously unknown leaf spot was observed on peony cultivated in the Mountain Peony Garden located in the Luoyang area of Henan Province, China. In 2009, the leaf spot disease was observed in some gardens in the city of Luoyang, China. Initial symptoms appeared as small, round or irregular, brown, necrotic lesions in the middle of leaves. These lesions gradually enlarged up to 1 cm in diameter and were circular or irregular, brown to dark brown, and brown on the margins. In a humid atmosphere, black, sessile, discoid acervuli developed on the lesions, and the lesions sometimes became waxy-like, eventually coalesced, and nearly covered the entire leaf. Conidia produced in acervuli had two morphologically different types. One type had a single basal appendage, ellipsoid to fusiform, transversely three septate, 16 to 20 × 5 to 7 μm, smooth, basal cell obconic with a truncate base, subhyaline, 3 to 5 μm long; two central cells subcylindrical to dolioform, brown to dark brown, 8 to 10 μm long, apical cell conical with rounded apex, concolorous with the central cells, 4 to 5 μm long, basal appendage filiform, unbranched, excentric, 4 to 8 μm long. The other type had a single appendage at both ends, fusiform to subcylindrical, transversely three septate, 16 to 20 × 4 to 5 μm, smooth; basal cell obconic with a truncate base, subhyaline, 4 to 5 μm long; two central cells subcylindrical to dolioform, pale brown, 8 to 11 μm long; apical cell conical with an acute apex, hyaline to subhyaline, 4 to 5 μm long; basal appendage filiform, unbranched, excentric, 4 to 8 μm long; apical appendage filiform, unbranched, 4 to 8 μm long. Single conidial isolates of both types of conidia yielded identical colonies, which produced both types of conidia on potato dextrose agar (PDA), thus showing that both types of conidia belonged to the same fungus. Colonies on PDA were slimy in appearance, yellow to villous with an irregular taupe margin; reverse brown to grayish brown. Cultural and conidial characteristics of the isolates were similar to those of Seimatosporium botan (1). The DNA sequence for the fungus showed internal transcribed spacer region (ITS1-5.8S-ITS2) sequences (GenBank Accession No. HM067840) with 93% sequence identity to S. discosioides (Accession Nos. EF600970.1 and EF600969.1). This is the first submission of a S. botan sequence to GenBank. To determine pathogenicity, 20 healthy leaves of P. suffruticosa were inoculated by spraying a conidial suspension of S. botan onto the foliage. Ten leaves were sprayed with sterile water and served as controls. Plants were covered with plastic for 24 h to maintain high relative humidity. After 15 days, the symptoms described above were observed on leaves in all inoculated plants, whereas symptoms did not develop on the control plants. The pathogen was reisolated from inoculated leaves, fulfilling Koch's postulates. On the basis of morphology and ITS region sequences, we conclude that S. botan is the causal agent of leaf spots of P. suffruticosa. There is a report of S. botan on P. suffruticosa stems in Japan (1), but to our knowledge, this is the first report of leaf spot disease of peony caused by S. botan in China. References: (1) S. Hatakeyama et al. Mycoscience 45:106, 2004.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Xiang-rong Zheng ◽  
Fengmao Chen

American sweetgum (Liquidambar styraciflua L.) is a forest plant native to North America, which has been introduced into other countries due to its ornamental and medicinal values. In June 2019, symptoms of leaf spots on sweetgum were observed in a field (5 ha) located in Xuzhou, Jiangsu Province, China. On this field, approximately 45% of 1,000 trees showed the same symptoms. Symptoms were observed showing irregular or circular dark brown necrotic lesions approximately 5 to 15 mm in diameter with a yellowish margin on the leaves. To isolate the pathogen, diseased leaf sections (4×4mm) were excised from the margin of the lesion, surface-sterilized with 0.1% NaOCl for 90 s, rinsed 4 times in sterile distilled water, air dried and then transferred on potato dextrose agar (PDA) medium at 25°C in the dark. Pure cultures were obtained by monospore isolation after subculture. Ten purified isolates, named FXI to FXR, were transferred to fresh PDA and incubated as above to allow for morphological and molecular identification. After 7 days, the aerial mycelium was abundant, fluffy and exhibited white to greyish-green coloration. The conidia were dark brown or olive, solitary or produced in chains, obclavate, with 1 to 15 pseudosepta, and measured 45 to 200µm  10 to 18µm. Based on morphological features, these 10 isolates were identified as Corynespora cassiicola (Ellis et al. 1971). Genomic DNA of each isolate was extracted from mycelia using the cetyltrimethylammonium bromide (CTAB) method. The EF-1α gene and ITS region were amplified and sequenced with the primer pairs rDNA ITS primers (ITS4/ITS5) (White et al. 1990) and EF1-728F/EF-986R (Carbone et al.1999) respectively. The sequences were deposited in GenBank. BLAST analysis revealed that the ITS sequence had 99.66% similarity to C. cassiicola MH255527 and that the EF-1α sequence had 100% similarity to C. cassiicola KX429668A. maximum likelihood phylogenetic analysis based on EF-1α and ITS sequences using MEGA 7 revealed that ten isolates were placed in the same clade as C. cassiicola (Isolate: XQ3-1; accession numbers: MH572687 and MH569606, respectively) at 98% bootstrap support. Based on the morphological characteristics and phylogenetic analyses, all isolates were identified as C. cassiicola. For the pathogenicity test, a 10 µl conidial suspension (1×105 spores/ml) of each isolate was dripped onto healthy leaves of 2-year-old sweetgum potted seedlings respectively. Leaves inoculated with sterile water served as controls. Three plants (3 leaves per plant) were conducted for each treatment. The experiment was repeat twice. All seedlings were enclosed in plastic transparent incubators to maintain high relative humidity (90% to 100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. After 10 days, leaves inoculated with conidial suspension of each isolate showed symptoms of leaf spots, similar to those observed in the field. Control plants were remained healthy. In order to reisolate the pathogen, surface-sterilized and monosporic isolation was conducted as described above. The same fungus was reisolated from the lesions of symptomatic leaves, and its identity was confirmed by molecular and morphological approaches, thus fulfilling Koch’s postulates. Chlorothalonil and Boscalid can be used to effectively control Corynespora leaf spot (Chairin T et al.2017). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on L. styraciflua in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chaodong Qiu ◽  
Yingying Zhang ◽  
Zhenyu Liu

Sweet viburnum [Viburnum odoratissimum (L.) Ker Gawl] is an evergreen shrub mainly cultivated along roadsides in urban landscapes and also in parks and residential areas. A foliar disease occurred on about 40% of sweet viburnum plants near Anhui Grand Theatre, Anhui Province of China in June 2019. In early stages of sweet viburnum infection, the symptoms appeared as small brown spots ranged in length from 2 to 3 millimeters on the leaves. The spots developed on the upper, middle, and lower leaves of the plant, however, the upper leaves got more severely affected. As the disease develops, the spots enlarged and became rectangular or oval, brown to dark-brown, and their centers became ashen gray. In later stages of infection, the diseased leaves became wilting. Diseased leaves were surface disinfested and three small sections (2-3 mm2) were cut from the margin of the lesions. Sections were placed in 1.5% NaClO for 2 min, submerged in three changes of sterilized distilled water for 1 min each, placed onto potato dextrose agar (PDA) medium amended with 50 μg/ml of ampicillin and kanamycin, and incubated at 25℃ for 3 days. The mycelium from the leading edge of colonies growing from the tissue was sub-cultured onto a PDA plate for 3 days, followed by spore induction (Simmons 2007) and single spore isolation to obtain a pure culture of the putative pathogen. Colonies of one single spore isolate HF0719 were rounded, grayish white with dense aerial mycelium viewed from above and dark brown viewed from below. On potato carrot agar (PCA) medium, conidiophores were branched or occasionally unbranched. On branched conidiophores, conidia were in dwarf tree-like branched chains of 2-5 conidia. On unbranched conidiophores, conidia were simple or in chains of 2-8 conidia. Conidia were light brown or dark brown, ovoid, ellipsoidal to fusiform, and ranged in size from 7 to 26.5 × 4.5 to 11 μm with an average size of 16 × 7 µm based on 500 spore observations, with one beak and 1-7 transverse, 0-3 longitudinal, and 0-3 oblique septa. Beaks were ranged in (1.5-)2-10(-16) μm long. Based on cultural and morphological characteristics, isolate HF0719 was identified as Alternaria spp. (Simmons 2007). For molecular identification, total genomic DNA was isolated from mycelia collected from 7 day-old colonies of isolate HF0719 using the fungal genomic DNA extraction kit (Solarbio, Beijing, China). Fragments of five genes, including those encoding glyceraldehyde-3-phosphate dehydrogenase (gpd), plasma membrane ATPase, actin, calmodulin, and the Alternaria major allergen (Alt a1) regions of isolate HF0719 were amplified and sequenced using primer pairs gpd1/gpd2 (Berbee et al. 1999), ATPDF1/ATPDR1, ACTDF1/ACTDR1, CALDF1/CALDR1 (Lawrence et al. 2013), and Alt-for/Alt-rev (Hong et al. 2005), respectively. The obtained nucleotide sequences were deposited into GenBank as accession numbers: gpd, MT614365; ATPase, MT614364; actin, MT614363; calmodulin, MN706159; and Alt a1, MN304720. Phylogenetic tree using a maximum likelihood bootstrapping method based on the five-gene combined dataset in the following order: gpd, ATPase, actin, calmodulin, Alt a1 of HF0719 and standard strains representing 120 Alternaria species (Lawrence et al. 2013) was constructed. Isolate HF0719 formed a separate branch. On the basis of morphological characteristics and phylogenetic pattern, isolate HF0719 was identified as Alternaria spp.. A pathogenicity test was performed by rubbing 32 healthy leaves of six 5-year-old sweet viburnum plants with a cotton swab dipped in spore suspension containing 2.6 × 106 spores/ml, following leaf surface disinfection with 70% ethanol in the open field. Sterilized distilled water was used as control. The average air temperature was about 28℃ during the period of pathogenicity test. Eleven days after inoculation, 100% of inoculated leaves showed the leaf spot symptom identical to symptoms observed in the field. Control leaves were symptomless. The experiment was done three times. The re-isolated pathogen from the leaf lesion had the same morphological and molecular characteristics as isolate HF0719, thus satisfying Koch’s postulates. The genus Alternaria has been reported to cause leaf spot on sweet viburnum in Florida, USA (Alfieri et al. 1984). To our knowledge, this is the first report of Alternaria spp. causing leaf spot on sweet viburnum in China, a highly valued ornamental plant. Our findings will contribute to monitoring and adopting strategies for manage leaf spot disease on sweet viburnum.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ling Qiu ◽  
Jingwen Liu ◽  
Weigang Kuang ◽  
Kai Zhang ◽  
Jian Ma

Eurya nitida Korth. belonging to the family Theaceae is an evergreen shrub or small tree and is usually used as a very important ornamental tree and nectar source plant (Khan et al. 1992; Ma et al. 2013). It also has high medicinal values with the treatment of rheumatoid arthritis, diarrhea, innominate inflammatory of unknown origin, ulcer fester and traumatic hemorrhage (Park et al. 2004). In October 2020, symptoms of leaf spot were observed on E. nitida in Meiling Scenic Spot of Nanchang, Jiangxi Province, China (28.78°N, 115.83°E). We surveyed about 300 m2 of the mountain area which holds about 100 trees of E. nitida scattered naturally near the waterside or regularly planted on either side of the mountain road. Most of the infected plants were observed from humid environments or waterside, with 15~20% disease incidence, and the disease severity on a plant basis was determined to be 25% to 30%, depending on the field. Sixty infected leaves were collected from 20 individual trees which have the same symptoms. The symptoms on infected leaves appeared as tiny circular spots that gradually enlarged into brown circular necrotic lesions and then became a light gray with brown borders and black acervuli at the later stages of the disease. Ten leaves of infected tissues randomly selected from collected sixty infected leaves were cut into 4 mm2 pieces, and surface disinfected with 75% ethanol for 30s and 1% hypochlorite for 1 min, rinsed three times with sterile water, plated on potato dextrose agar (PDA), and incubated at 25°C in the dark for 5 to 7 days. Five isolates with similar morphological characteristics were obtained. Colonies developed copious white aerial mycelium covering the entire Petri dish area after 7 to 10 days. Conidiogenous cells were discrete, hyaline, and smooth. Conidia were fusiform, ellipsoid, 4-euseptate and ranged from 21.86 to 29.80 × 5.95 to 9.80 µm. Apical cells were hyaline with 2 to 3 unbranched, tubular apical appendages (mostly 3); basal cell was hyaline, obconic with a truncate base; three median cells doliiform to subcylindrical, brown. The morphological characteristics of all isolates matched features described for Pestalotiopsis chamaeropis Maharachch., K.D. Hyde & Crous (Maharachchikumbura et al. 2014). Two single representatives (JAUCC L001-1 and JAUCC L002) were used for molecular identification, which were verified based on the amplification of DNA sequences of internal transcribed spacer region (ITS) gene and translation elongation factor 1 alpha (TEF1-α) gene, using the primers ITS4/ITS5 (White et al. 1990) and EF1-526F/EF1-1567R (Rehner and Buckley 2005), respectively. The sequenced loci (GenBank accession nos. ITS: MW845761, MW828589 and TEF1-α: MW838967, MZ292464) exhibited over 99% homology with P. chamaeropis strain CBS 186.71 in GenBank (GenBank accession nos. KM199326 and KM199473), confirming the morphological identification. Phylogenetic reconstruction was generated by using the maximum likelihood (ML) method based on the Kimura 2-parameter model, with bootstrap nodal support for 1000 pseudoreplicates in MEGA software, version 7.0. The result showed that our isolates were clustered together with P. chamaeropis at 99% bootstrap values. Based on morphological characteristics and molecular phylogenetic analysis, the isolates were identified as P. chamaeropis. The pathogenicity of one representative isolate (JAUCC L001-1) was tested indoor by inoculating the top leaves of six healthy E. nitida plants. Three plants with three leaves were punctured with flamed needles and sprayed with a conidial suspension (1 × 106 conidia/ml), and other three plants wounded inoculated with mycelial plugs (5 × 5 mm3). Mock inoculations were used as controls with sterile water and non-infested PDA plugs on three leaves each. Treated plants were incubated in an artificial climate box with high relative humidity at 25 °C. After 10 days, symptoms on all wounded inoculated plants were similar to those previously observed with distinct tiny circular spots, whereas no symptoms appeared on inoculated plants. Pestalotiopsis chamaeropis was re-isolated from symptomatic tissues but not from the mock-inoculated plants, and its identity was confirmed by morphological characteristics and molecular data, which confirmed Koch's postulates. Pestalotiopsis chamaeropis was previously reported as the causal agent of leaf blight diseases on Camellia sinensis in China (Chen et al. 2020), Pieris japonica in Japan (Nozawa et al. 2019) and Prostanthera rotundifolia in Australia (Azin et al. 2015). To our knowledge, this is the first report of P. chamaeropis causing a leaf spot disease on E. nitida in China, and this disease may be more widespread than the sampled location. This finds is beneficial to the better protection of E. nitida, a widespread medicinal and nectar source plant with high economic value.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Guo ◽  
Jin Chen ◽  
Zhao Hu ◽  
Jie Zhong ◽  
Jun Zi Zhu

Cardamine hupingshanensis is a selenium (Se) and cadmium (Cd) hyperaccumulator plant distributed in wetlands along the Wuling Mountains of China (Zhou et al. 2018). In March of 2020, a disease with symptoms similar to gray mold was observed on leaves of C. hupingshanensis in a nursery located in Changsha, Hunan Province, China. Almost 40% of the C. hupingshanensis (200 plants) were infected. Initially, small spots were scattered across the leaf surface or margin. As disease progressed, small spots enlarged to dark brown lesions, with green-gray, conidia containing mold layer under humid conditions. Small leaf pieces were cut from the lesion margins and were sterilized with 70% ethanol for 10 s, 2% NaOCl for 2 min, rinsed with sterilized distilled water for three times, and then placed on potato dextrose agar (PDA) medium at 22°C in the dark. Seven similar colonies were consistently isolated from seven samples and further purified by single-spore isolation. Strains cultured on PDA were initially white, forming gray-white aerial mycelia, then turned gray and produced sclerotia after incubation for 2 weeks, which were brown to blackish, irregular, 0.8 to 3.0 × 1.2 to 3.5 mm (n=50). Conidia were unicellular, globose or oval, colourless, 7.5 to 12.0 × 5.5 to 8.3 μm (n=50). Conidiophores arose singly or in group, straight or flexuous, septate, brownish to light brown, with enlarged basal cells, 12.5 to 22.1 × 120.7 to 310.3 μm. Based on their morphological characteristics in culture, the isolates were putatively identified as Botrytis cinerea (Ellis 1971). Genomic DNA of four representative isolates, HNSMJ-1 to HNSMJ-4, were extracted by CTAB method. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH), heat-shock protein 60 gene (HSP60), ATP-dependent RNA helicaseDBP7 gene (MS547) and DNA-dependent RNA polymerase subunit II gene (RPB2) were amplified and sequenced using the primers described previously (Aktaruzzaman et al. 2018) (MW820311, MW831620, MW831628, MW831623 and MW831629 for HNSMJ-1; MW314722, MW316616, MW316617, MW316618 and MW316619 for HNSMJ-2; MW820519, MW831621, MW831627, MW831624 and MW831631 for HNSMJ-3; MW820601, MW831622, MW831626, MW831625 and MW831630 for HNSMJ-4). BLAST searches showed 99.43 to 99.90% identity to the corresponding sequences of B. cinerea strains, such as HJ-5 (MF426032.1, MN448500.1, MK791187.1, MH727700.1 and KX867998.1). A combined phylogenetic tree using the ITS, G3PDH, HSP60 and RPB2 sequences was constructed by neighbor-joining method in MEGA 6. It revealed that HNSMJ-1 to HNSMJ-4 clustered in the B. cinerea clade. Pathogenicity tests were performed on healthy pot-grown C. hupingshanensis plants. Leaves were surface-sterilized and sprayed with conidial suspension (106 conidia/ mL), with sterile water served as controls. All plants were kept in growth chamber with 85% humidity at 25℃ following a 16 h day-8 h night cycle. The experiment was repeated twice, with each three replications. After 4 to 7 days, symptoms similar to those observed in the field developed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from symptomatic tissues and identified using molecular methods, confirming Koch’s postulates. B. cinerea has already been reported from China on C. lyrate (Zhang 2006), a different species of C. hupingshanensis. To the best of our knowledge, this is the first report of B. cinerea causing gray mold on C. hupingshanensis in China and worldwide. Based on the widespread damage in the nursery, appropriate control strategies should be adopted. This study provides a basis for studying the epidemic and management of the disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Walftor Dumin ◽  
Mi-Jeong Park ◽  
You-Kyoung Han ◽  
Yeong-Seok Bae ◽  
Jong-Han Park ◽  
...  

Garlic (Allium sativum L. cv.namdo) is one of the most popular vegetables grown in Korea due to its high demand from the food industry. However, garlic is susceptible to a wide range of pest infestations and diseases that cause a significant decrease in garlic production, locally and globally (Schwartz and Mohan 2008). In early 2019, the occurrence of leaf blight disease was found spreading in garlic cultivation areas around Jeonnam (34.9671107, 126.4531825) province, Korea. Disease occurrence was estimated to affect 20% of the garlic plants and resulted in up to a 3-5% decrease in its total production. At the early stage of infection, disease symptoms were manifested as small, white-greyish spots with the occurrence of apical necrosis on garlic leaves. This necrosis was observed to enlarge, producing a water-soaked lesion before turning into a black-violet due to the formation of conidia. As the disease progressed, the infected leaves wilted, and the whole garlic plants eventually died. To identify the causal agent, symptomatic tissues (brown dried water-soak lesion) were excised, surface sterilized with 1% NaOCl and placed on the Potato Dextrose Agar (PDA) followed by incubation at 25°C in the dark for 5 days. Among ten fungal isolates obtained, four were selected for further analyses. On PDA, fungal colonies were initially greyish white in colour but gradually turned to yellowish-brown after 15 days due to the formation of yellow pigments. Conidia were muriform, brown in colour, oblong (almost round) with an average size of 18 – 22 × 16 – 20 μm (n = 50) and possessed 6 - 8 transverse septa. Fungal mycelia were branched, septate, and with smooth-walled hyphae. Morphological characteristics described above were consistent with the morphology of Stemphylium eturmiunum as reported by Simmons (Simmons, 2001). For molecular identification, molecular markers i.e. internal transcribed spacer (ITS) and calmodulin (cmdA) genes from the selected isolates were amplified and sequenced (White et al., 1990; Carbone and Kohn 1999). Alignment analysis shows that ITS and cmdA genes sequence is 100% identical among the four selected isolates. Therefore, representative isolate i.e. NIHHS 19-142 (KCTC56750) was selected for further analysis. BLASTN analysis showed that ITS (MW800165) and cmdA (LC601938) sequences of the representative isolates were 100% identical (523/523 bp and 410/410 bp) to the reference genes in Stemphylium eturmiunum isolated from Allium sativum in India (KU850545, KU850835) respectively (Woudenberg et al. 2017). Phylogenetic analysis of the concatenated sequence of ITS and cmdA genes confirmed NIHHS 19-142 isolates is Stemphylium eturmiunum. Pathogenicity test was performed using fungal isolate representative, NIHHS 19-142. Conidia suspension (1 × 106 conidia/µL) of the fungal isolate was inoculated on intact garlic leaves (two leaves from ten different individual plants were inoculated) and bulbs (ten bulbs were used) respectively. Inoculation on intact leaves was performed at NIHHS trial farm whereas inoculated bulbs were kept in the closed container to maintain humidity above 90% and incubated in the incubator chamber at 25°C. Result show that the formation of water-soaked symptoms at the inoculated site was observed at 14 dpi on intact leaves whereas 11 dpi on bulbs. As a control, conidia suspension was replaced with sterile water and the result shows no symptoms were observed on the control leaves and bulbs respectively. Re-identification of fungal colonies from symptomatic leaf and bulb was attempted. Result showed that the morphological characteristics and molecular marker sequences of the three colonies selected were identical to the original isolates thus fulfilled Koch’s postulates. Early identification of Stemphylium eturmiunum as a causal agent to leaf spot disease is crucial information to employ effective disease management strategies or agrochemical applications to control disease outbreaks in the field. Although Stemphylium eturmiunum has been reported to cause leaf spot of garlic disease in China, France and India (Woudenberg et al. 2017), to our knowledge, this is the first report of causing leaf spot disease on garlic in Korea.


Sign in / Sign up

Export Citation Format

Share Document