scholarly journals First Report in Hawai'i of Xanthomonas citri pv. mangiferaeindicae Causing Bacterial Black Spot on Mangifera indica

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1244-1244 ◽  
Author(s):  
J. Yasuhara-Bell ◽  
A. S. de Silva ◽  
A. M. Alvarez ◽  
R. Shimabuku ◽  
M. Ko

Bacterial black spot of mango (Mangifera indica) caused by Xanthomonas citri pv. mangiferaeindicae (Xcm), is an economically important disease in tropical and subtropical areas (3). Xcm can infect a wide range of mango cultivars and induces raised, angular, black leaf lesions, sometimes with a chlorotic halo. Fruit symptoms appear as small, water-soaked spots on the lenticels that become star-shaped, erumpent, and exude an infectious gum (3). The bacterium can also cause latent infections (2). Immature mango fruit with black spots on the epidermis were collected in August 2012 from mango trees of the cvs. Raposa and Pirie at a residence in Pukalani, Hawai'i, on the island of Maui. Similar symptoms were seen on a tree of the mango cv. Common (also known as ‘Spanish’ or ‘Lahaina’) at a nearby golf course. Mango fruit with black lesions, and leaves showing black lesions with yellow halos, were collected in August 2012 from mango trees of the cv. Haden at a residence in Kaimuki, Hawai'i, on the island of O'ahu. Xanthomonas-like bacterial colonies were isolated on TZC agar. Suspect colonies were non-pigmented on YDC agar. A fruit strain of the bacterium from Maui (A6081A) and a strain from each of a fruit (A6081B) and a leaf (A6082) from O'ahu were each gram-negative, oxidative, positive for both starch and esculin hydrolysis, and negative for nitrate reduction, resulting in presumptive identification as a Xanthomonas sp. The three strains were further characterized by Microlog (Biolog, Inc. Hayward, CA), which showed the closest match with X. campestris. In addition, 16S rDNA PCR assays showed the closest match (99% similarity) with X. citri strains, and RIF marker analysis of dnaA (4) grouped the three strains with Xcm strain LMG 941 (Accession No. CAHO01000002.1). Hypersensitivity responses typical of xanthomonads were observed when these strains were infiltrated into tobacco leaves, whereas no response was observed using sterile water. Leaves of 3-week-old mango seedlings were infiltrated using 10 μl (~108 CFU/ml) of each strain suspended in sterilized water (six to eight inoculations per leaf, four leaves per plant, and three replicate plants per strain). The negative control treatments consisted of inoculation with sterile water, as well as an incompatible pathogen, X. hortorum pv. vitians (A6076), isolated from lettuce. Typical symptoms of bacterial black spot were observed for all strains assayed approximately 2 weeks after inoculation. No lesions were observed on the negative control plants. Koch's postulates were satisfied following reisolation and identification of the Xanthomonas strains from the infected plant tissues, using the biochemical and PCR methods described above. Results for strains from the two islands confirmed published descriptions of the pathogen, indicating that the pathogen causing symptoms on these mango trees is Xcm (1). Cultures and infected plant samples were sent to USDA APHIS and CPHST NPGLB facilities where this identification was confirmed. To our knowledge, this is the first report of bacterial black spot of mango in Hawai'i or anywhere in the United States. It is unknown whether this disease is a new occurrence or has not been reported previously. The origin of the primary inoculum is unknown. References: (1) B. Manicom and F. Wallis. Int. J. Syst. Bacteriol. 34:77, 1984. (2) O. Pruvost et al. Microbial Ecol. 58:928. (3) O. Pruvost et al. Plant Dis. 95:774, 2011. (4) K. Schneider et al. PLoS 6:e18496, 2011.

Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 774-774 ◽  
Author(s):  
O. Pruvost ◽  
C. Boyer ◽  
K. Vital ◽  
C. Verniere ◽  
L. Gagnevin ◽  
...  

Bacterial canker of mango (or bacterial black spot), caused by Xanthomonas citri pv. mangiferaeindicae, is an economically important disease in tropical and subtropical producing areas (1). X. citri pv. mangiferaeindicae can cause severe infection in a wide range of mango cultivars and induces raised, angular, black leaf lesions, sometimes with a chlorotic halo. Several months after infection, leaf lesions dry and turn light brown or ash gray. Severe leaf infection may result in abscission. Fruit symptoms appear as small water-soaked spots on the lenticels. These spots later become star shaped, erumpent, and exude an infectious gum. Often, a “tear stain” infection pattern is observed on the fruit. Severe fruit infections will cause premature fruit drop. Twig cankers are potential sources of inoculum and weaken resistance of branches to wind damage. Leaf lesions with suspected bacterial canker were collected in January 2010 from mango trees cv. Keitt in several blocks at the Integrated Tamale Fruit Company, Ghana. Non-pigmented Xanthomonas-like bacterial colonies were isolated on Kasugamycin-Cephalexin semiselective agar medium (3). On the basis of IS1595-Ligation Mediated-PCR data, 16 strains from Ghana produced identical fingerprints and were identified as X. citri pv. mangiferaeindicae (4). The haplotype corresponding to the Ghanaian strains had not been previously reported. On the basis of multidimensional scaling (4), this haplotype clustered together with a group of strains from multiple origins and the analysis was not informative as an aid for tracing back the outbreak. Five Ghanaian strains (LH2-3, LH2-6, LH2-8, LH2-11, and LH2-15) were compared by multilocus sequence analysis to the type strain of X. citri and the pathotype strain of several X. citri pathovars, including pvs. anacardii and mangiferaeindicae. This assay targeted the atpD, dnaK, efp, and gyrB genes as described previously (2). Nucleotide sequences were 100% identical to those of the pathotype strain of X. citri pv. mangiferaeindicae whatever the gene assayed, but differed from any other assayed X. citri pathovar. Mango cv. Maison Rouge leaves from the youngest vegetative flush were infiltrated (10 inoculation sites per leaf, three replicate plants) using inoculum of each of the same five Ghanaian strains made from suspensions in Tris buffer containing ~1 × 105 CFU/ml. Negative control treatments consisted of leaves infiltrated with sterile Tris buffer. Typical symptoms of bacterial canker were observed for all assayed strains a week after inoculation. No lesions were recorded from the negative control. One month after inoculation, mean X. citri pv. mangiferaeindicae population sizes ranging from 4 × 107 to 1 × 108 CFU/lesion were recovered from leaf lesions, typical of a compatible interaction (1). High disease prevalence was observed in Ghana, indicating the suitability of environmental conditions in this region for the development of mango bacterial canker. The budwood for these blocks was imported from Burkina Faso in 2002 and symptoms were observed in these blocks shortly after establishment. To our knowledge, this is the first report of mango bacterial canker in Western Africa. References: (1) N. Ah-You et al. Phytopathology 97:1568, 2007. (2) L. Bui Thi Ngoc et al. Int. J. Syst. Evol. Microbiol. 60:515, 2010. (3) O. Pruvost et al. J. Appl. Microbiol. 99:803, 2005. (4) O. Pruvost et al. Phytopathology. Online publication. DOI:10.1094/PHYTO-11-10-0304, 2011.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 581-581 ◽  
Author(s):  
O. Pruvost ◽  
C. Boyer ◽  
K. Vital ◽  
C. Verniere ◽  
L. Gagnevin ◽  
...  

Bacterial canker (or black spot) of mango caused by Xanthomonas citri pv. mangiferaeindicae is an important disease in tropical and subtropical areas (1). X. citri pv. mangiferaeindicae can cause severe infection in a wide range of mango cultivars and induces raised, angular, black leaf lesions, sometimes with a chlorotic halo. Severe leaf infection may result in abscission. Fruit symptoms appear as small, water-soaked spots on the lenticels that later become star shaped, erumpent, and exude an infectious gum. Often, a “tear stain” infection pattern is observed on the fruit. Severe fruit infections cause premature drop. Twig cankers are potential sources of inoculum and weaken branch resistance to winds. Yield loss up to 85% has been reported at grove scale for susceptible cultivars (1). Suspected leaf lesions of bacterial canker were collected in July 2010 from mango trees in four, six, and three localities of the Koulikoro, Sikasso, and Bougouni provinces of Mali, respectively (i.e., the major mango-growing areas in this country). Nonpigmented Xanthomonas-like colonies were isolated on KC semiselective medium (3). Twenty-two strains from Mali were identified as X. citri pv. mangiferaeindicae based on IS1595-ligation-mediated PCR (4) and they produced fingerprints fully identical to that of strains isolated from Ghana and Burkina Faso. Five Malian strains (LH409, LH410, LH414, LH415-3, and LH418) were compared by multilocus sequence analysis (MLSA) to the type strain of X. citri and the pathotype strain of several X. citri pathovars, including pvs. anacardii and mangiferaeindicae. This assay targeted the atpD, dnaK, efp, and gyrB genes, as described previously (2). Nucleotide sequences were 100% identical to those of the pathotype strain of X. citri pv. mangiferaeindicae whatever the gene assayed, but differed from any other assayed X. citri pathovar. Leaves of mango cv. Maison Rouge from the youngest vegetative flush were infiltrated (10 inoculation sites per leaf for three replicate leaves on different plants per bacterial strain) with the same five strains from Mali. Bacterial suspensions (~1 × 105 CFU/ml) were prepared in 10 mM Tris buffer (pH 7.2) from 16-h-old cultures on YPGA (7 g of yeast, 7 g of peptone, 7 g of glucose, and 18 g of agar/liter, pH 7.2). The negative control treatment consisted of three leaves infiltrated with sterile Tris buffer (10 sites per leaf). Plants were incubated in a growth chamber at 30 ± 1°C by day and 26 ± 1°C by night (12-h/12-h day/night cycle) at 80 ± 5% relative humidity. All leaves inoculated with the Malian strains showed typical symptoms of bacterial canker a week after inoculation. No lesions were recorded from the negative controls. One month after inoculation, mean X. citri pv. mangiferaeindicae population sizes ranging from 5 × 106 to 1 × 107 CFU/lesion were recovered from leaf lesions, typical of a compatible interaction (1). To our knowledge, this is the first report of the disease in Mali. Investigations from local growers suggest that the disease may have been present for some years in Mali but likely less than a decade. A high disease incidence and severity were observed, suggesting the suitability of environmental conditions in this region for the development of mango bacterial canker. References: (1) N. Ah-You et al. Phytopathology 97:1568, 2007. (2) L. Bui Thi Ngoc et al. Int. J. Syst. Evol. Microbiol. 60:515, 2010. (3) O. Pruvost et al. J. Appl. Microbiol. 99:803, 2005. (4) O. Pruvost et al. Phytopathology 101:887, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1740-1740 ◽  
Author(s):  
O. Pruvost ◽  
C. Boyer ◽  
P. Grygiel ◽  
K. Boyer ◽  
C. Verniere ◽  
...  

Xanthomonas citri pv. mangiferaeindicae causing bacterial canker (or black spot) is a major mango (Mangifera indica L.) pathogen in tropical and subtropical areas (3). The bacterium infects a wide range of mango cultivars, and induces raised, angular, black leaf lesions, sometimes with a yellow chlorotic halo. Fruit symptoms first appear as small water-soaked spots on the lenticels turning into star-shaped, erumpent lesions, which exude an infectious gum, yielding tear-stain patterns. Severe infections cause severe defoliation and/or premature fruit drop. Twig cankers are potential sources of inoculum and weaken branch resistance to winds. Drastic yield losses have been reported at grove scale for susceptible cultivars (3). Mango leaves showing typical angular, black, raised leaf lesions were first observed and collected in April 2014 from trees cv. Kent in five localities of the Korhogo province of Ivory Coast (i.e., the major commercial mango-growing area in this country). Non-pigmented Xanthomonas-like colonies were isolated on KC semi-selective medium (4). Five strains (LL60-1, LL61-1, LL62-1, LL63-1, and LL64-1), one from each locality, were compared by multilocus sequence analysis (MLSA) to the type strain of X. citri and the pathotype strain of several X. citri pathovars, including pvs. anacardii and mangiferaeindicae. This assay targeted the atpD, dnaK, efp, and gyrB genes, as described previously (2). Nucleotide sequences were 100% identical to those of the pathotype strain of X. citri pv. mangiferaeindicae whatever the gene assayed, but differed from any other assayed X. citri pathovar. Leaves of mango cv. Maison Rouge from the youngest vegetative flush were infiltrated (10 inoculation sites/leaf for three replicate leaves on different plants/bacterial strain) as detailed previously (1) with the same five strains. Bacterial suspensions (~1 × 105 cfu/ml) were prepared in 10 mM Tris buffer (pH 7.2) from 16-h-old cultures on YPGA (7 g yeast, 7 g peptone, 7 g glucose, and 18 g agar/liter, pH 7.2). The negative control treatment consisted of three leaves infiltrated with sterile Tris buffer (10 sites/leaf). Plants were incubated in a growth chamber at 30 ± 1°C by day and 26 ± 1°C by night (12-h day/night cycle) at 80 ± 5% RH. All leaves inoculated with the strains from Ivory Coast showed typical symptoms of bacterial canker a week after inoculation. No lesions were recorded from the negative controls. The pathogen was recovered at high population densities (>1 × 106 cfu/lesion) from leaf lesions, typical of a compatible interaction (1) and isolated colonies were identified as the target by atpD sequencing (2). Koch's postulates have therefore been fully verified. This is the first report of the disease in Ivory Coast, a country which has been an internationally significant mango exporter (up to 15,000 tons per year) over the last two decades. A high disease incidence and severity were observed, outlining the need for implementing integrated pest management in mango groves and the production of disease-free nursery stock. This report further expands the distribution of the pathogen in West Africa after its first description from Ghana in 2011 (5) and subsequently in other neighboring countries. References: (1) N. Ah-You et al. Phytopathology 97:1568, 2007. (2) L. Bui Thi Ngoc et al. Int. J. Syst. Evol. Microbiol. 60:515, 2010. (3) L. Gagnevin and O. Pruvost. Plant Dis. 85:928, 2001. (4) O. Pruvost et al. J. Appl. Microbiol. 99:803, 2005. (5) O. Pruvost et al. Plant Dis. 95:774, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1582-1582 ◽  
Author(s):  
Y.-Z. Zhao ◽  
Y.-L. Feng ◽  
M.-C. Liu ◽  
Z.-H. Liu

Xanthium orientale subsp. italicum (Moretti) Greuter is an annual herbaceous plant in the Asteraceae family, native to North America. It was first found in Beijing, China, in 1991. Since then, it has spread into many provinces such as Heilongjiang, Jilin, Liaoning, Hebei, Shandong, Xinjiang, and so on. Furthermore, it has been listed as one of the dangerous quarantine weeds in China (4). This noxious invasive weed has a strong ability to acclimatize to new environments. X. orientale subsp. italicum can usually be found in alluvial flatlands, riverbanks, wastelands, roadsides, pastures, as well as farmlands. The presence of this plant decreases the native biodiversity and influences the production of agriculture and stockbreeding. In August 2013, a rust disease was first observed on X. orientale subsp. italicum in Dalian, Liaoning Province, northeast China. Various sized lesions were found on approximately one third of the leaves of each infected plant. These lesions were yellow in the early stage of infection; gradually the center of each lesion turned brown, and eventually the infected lesions became necrotic and ruptured. The small (on average 4 mm in diameter) and dark brown raised telia appeared in the center of the lesions on the lower leaf surface. The teliospores were brown, clavate, two-celled, and measured 42 to 58 × 12 to 21 μm. Teliospores had a conical top, constricted septa, and a persistent pedicel (22 to 70 μm in length). The walls of the teliospores were smooth, 0.8 to 1.2 μm thick at the side and 4 to 8 μm thick at the apex. The size, color, and morphology of the teliospores fit the description of Puccinia xanthii (1,3). A pathogenicity test was conducted by the method of detached leaf inoculation (2). We collected 48 healthy leaves from six individuals of X. orientale subsp. italicum plants, eight from each individual. Teliospores from disease samples were suspended to 1 × 105 spores per ml with sterile water and then smeared on 24 leaves (four per individual); the remaining leaves were inoculated with sterile water as control. Each of the leaves was put on a moist filter paper in a petri dish, and was cultured in a chamber with a 12-h photoperiod at 25°C. Seven days later, dark brown raised telia were observed on all inoculated leaves but not on control ones. The teliospores were removed from the sorus on inoculated leaves, and according to the morphology confirmed to be those of P. xanthii. The rust caused by P. xanthii has been documented in different hosts in many other countries such as Spain, France, Italy, former Yugoslavia, Australia, the United States, and South Africa. In addition, the rust fungus was found to infect X. orientale subsp. italicum in eastern Hungary (1). To our knowledge, this is the first report of P. xanthii attacking the invasive plant X. orientale subsp. italicum in China. It is important to study the potential of using this rust fungus as a biological control agent of X. orientale subsp. italicum. This work was supported by the Project of the National Natural Science Foundation of China (31270582). References: (1) I. Dávid et al. Plant Dis. 87:1536, 2003. (2) Z. D. Fang. Research Methods of Plant Disease, 1998. (3) J. A. Parmelee. Can. J. Bot. 47:1391, 1969. (4) F. H. Wan et al. Biological Invasion: Color Illustration of Invasive Alien Plants in China, 2012.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1854-1854 ◽  
Author(s):  
C. Zombré ◽  
P. Sankara ◽  
S. L. Ouédraogo ◽  
I. Wonni ◽  
O. Pruvost ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1225-1225 ◽  
Author(s):  
T. S. Schubert ◽  
M. M. Dewdney ◽  
N. A. Peres ◽  
M. E. Palm ◽  
A. Jeyaprakash ◽  
...  

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 μm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 μm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 μm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown ‘Valencia’ sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.


Plant Disease ◽  
2017 ◽  
Vol 101 (3) ◽  
pp. 503-503
Author(s):  
C. Zombré ◽  
I. Wonni ◽  
S. L. Ouédraogo ◽  
K. E. Kpemoua ◽  
K. Assignon ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 422-422
Author(s):  
Y. J. Choi ◽  
K. S. Han ◽  
J. H. Park ◽  
H. D. Shin

Persian buttercup (Ranunculus asiaticus L.) is an ornamental plant cultivated mainly in the countries surrounding the Mediterranean Sea, and has recently become popular in Korea. During March and April 2012, Persian buttercups ‘Elegance’ showing symptoms of downy mildew were found in plastic greenhouses in Hwaseong City of Korea. Infection resulted in chlorotic leaves with a dark greyish and dense fungal-like growth on the lower surfaces, and finally led to necrosis of the lesions. A sample was deposited in the Korea University herbarium (KUS-F26431). Conidiophores emerging from stomata were hyaline, 250 to 550 × 7 to 15 μm, straight, and dichotomously branched in 6 to 8 orders. Ultimate branchlets were mostly in pairs, slightly curved, 5 to 15 μm long, and had obtuse tips. Conidia were brown, broadly ellipsoidal to subglobose or ellipsoidal, often pedicellated, and measured 24 to 33 × 20 to 27 μm with a length/width ratio of 1.15 to 1.30. Fourteen species of Peronospora have previously been described on the genus Ranunculus (2), of which P. ficariae was mostly considered the causal agent of downy mildew on Persian buttercup (1,3). The present Korean accession is morphologically distinct from P. ficariae on R. ficaria (a synonym of Ficaria verna) by somewhat larger conidia with often pedicel-like ends. The nuclear ribosomal LSU and ITS regions were PCR-amplified and sequenced as described in Göker et al. (4), and the resulting sequences deposited in GenBank (Accession Nos. KC111207 and JX465737, respectively). A comparison with the GenBank sequences revealed that the present Korean pathogen differed from P. ficariae on R. ficaria at 10 of 688 characters (about 1.5%) in LSU (AF119600) and 11 of 802 characters (about 1.4%) in ITS sequences (unpublished sequence). In addition, the ITS sequence exhibits a dissimilarity of 1.5 to 2.0% from three species of Peronospora parasitic on Ranunculus; P. alpicola on R. aconitifolius (AY198271), P. illyrica on R. illyricus (AY198268), and P. ranunculi on R. acris (AY198267) and R. recurvatus (AY198269). Based on morphological and molecular distinction between P. ficariae and the Korean pathogen, we provisionally indicate this pathogen as an undetermined species of Peronospora. Pathogenicity was demonstrated by shaking diseased leaves onto the leaves of healthy Persian buttercup ‘Elegance’, incubating the plants in a dew chamber at 20°C for 24 h, and then maintaining them in a greenhouse (20 to 24°C and relative humidity 60 to 80%). After 3 to 4 days, inoculated plants developed downy mildew symptoms, from which an identical fungus was observed, thus fulfilling Koch's postulates. Control plants treated with sterile water did not develop any symptoms of downy mildew. To our knowledge, this is the first report of a downy mildew on Persian buttercup in Asia, although this disease has been found in other continental countries, such as Italy (1), New Zealand, South Africa, and the United States (3). The presence of a downy mildew on Persian buttercup in Asia can be considered as a potentially new and serious threat to commercial production of this ornamental plant. References: (1) E. Buonocore and R. Areddia. Informatore Fitopatologico 49:25, 1999. (2) O. Constantinescu. Thunbergia 15:1, 1991. (3) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved August 4, 2012. (4) M. Göker et al. Mycol. Res. 113:308, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1312-1312 ◽  
Author(s):  
O. Pruvost ◽  
C. Boyer ◽  
K. Vital ◽  
C. Verniere ◽  
L. Gagnevin ◽  
...  

Bacterial canker of mango (or bacterial black spot) caused by Xanthomonas citri pv. mangiferaeindicae, is an economically important disease in tropical and subtropical areas (1). X. citri pv. mangiferaeindicae can cause severe infection on a wide range of mango cultivars and induces raised, angular, black leaf lesions, sometimes with a chlorotic halo. Fruit symptoms are black, star shaped, erumpent, and exude an infectious gum. A survey was conducted in Burkina Faso in May 2010 because budwood putatively associated with an outbreak of bacterial canker in Ghana had originated from Burkina Faso (3). Leaves and twigs with suspected bacterial canker lesions were collected from mango trees of the cvs. Amélie, Brooks, and Kent and from seedlings at five localities in Comoe and Houet provinces. Severe infections were observed on the sampled trees in Burkina Faso and leaf symptoms were typical of bacterial canker. Leaves were surface sterilized for 15 to 30 s with 70% ethanol, and nonpigmented, Xanthomonas-like bacterial colonies were isolated on KC semiselective agar medium (1). On the basis of an IS1595-ligation mediated PCR assay, 18 strains from Burkina Faso produced identical fingerprints and were identified as X. citri pv. mangiferaeindicae (4). The haplotype for strains from Burkina Faso was identical to that reported from Ghana (3). Three strains from Burkina Faso (LH127-2, LH130-1, and LH131-1) were compared by multilocus sequence analysis (MLSA) with the type strain of X. citri and the pathotype strain of several X. citri pathovars, including pvs. anacardii and mangiferaeindicae, targeting the atpD, dnaK, efp, and gyrB genes (2). Nucleotide sequences were 100% identical to those of the pathotype strain of X. citri pv. mangiferaeindicae, regardless of the gene assayed, but differed from any other X. citri pathovar assayed. Leaves of mango cv. Maison Rouge, taken from the youngest vegetative flush, were infiltrated (10 inoculation sites per leaf for three replicate leaves on different plants per bacterial strain) with the same three strains from Burkina Faso. Bacterial suspensions (approximately 1 × 105 CFU/ml) were prepared in 10 mM Tris buffer (pH 7.2) from 16-h-old solid cultures on YPG agar (7 g of yeast, 7 g of peptone, 7 g of glucose, and 18 g of agar per liter, pH 7.2). The negative control treatment consisted of three leaves infiltrated with sterile Tris buffer (10 sites per leaf). Plants were incubated in a growth chamber at 30 ± 1°C by day and 26 ± 1°C by night (12-h/12-h day/night cycle) at 80 ± 5% relative humidity. Typical symptoms of bacterial canker were observed for all assayed strains 1 week after inoculation; no symptoms were observed from negative control leaves. One month after inoculation, mean X. citri pv. mangiferaeindicae populations ranging from 2 × 107 to 8 × 107 CFU/leaf lesion were recovered, which was typical of a compatible interaction (1). The origin of inoculum associated with the bacterial canker outbreak in Burkina Faso is unknown. This report documents severe infections in Burkina Faso (including premature fruit drop due to severe fruit infections) and confirms the presence of bacterial canker in western Africa. A more extensive survey for the disease should be conducted in this region. References: (1) N. Ah-You et al. Phytopathology 97:1568, 2007. (2) L. Bui Thi Ngoc et al. Int. J. Syst. Evol. Microbiol. 60:515, 2010. (3) O. Pruvost et al. Plant Dis. 95:774, 2011. (4) O. Pruvost et al. Phytopathology 101:887, 2011.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanling Ma ◽  
Tanvir Ahmad ◽  
Yongquan Zheng ◽  
Nie Chengrong ◽  
Yang Liu

China is the second largest producer of mango in the world, a fruit has high nutritive value and a rich source of fiber (Kuhn et al., 2017). In late June 2019, a postharvest stem-end rot disease was observed in different local fruit markets (39°48'42.1"N 116°20'17.0"E) of the Fengtai district of Beijing, China. Black rot symptomatic lesions were observed on the fruit surface which initially started from the stem end of the mango fruit (Fig. 1). Approximately 45 % of mango fruits were affected with the disease. Symptomatic portions from collected fruit samples (n=40) were cut into small pieces (2mm2), rinsed with 1% NaClO for 20s and then washed three times with sterilized distilled water (SDW) for surface disinfection. The disinfected pieces were then placed on sterilized filter paper for drying. Later, these pieces were placed on Potato Dextrose Agar (PDA) plates and incubated at 28°C for seven days. The resulting fungal colonies were purified by the single spore isolation technique. The isolated fungal colonies were initially greenish to gray in color, later turning olive-black to black. Conidia were dark brown in color, oval-shaped, two-celled and measured 22.4 to 25.7 (24.06 ± 0.15) μm in length and 10.2 to 12.8 (11.3 ± 0.13) μm in width (n=36). Based on the symptoms, culture morphology and microscopic characters, Lasiodiplodia theobromae was suspected as the causal agent, and similar results were reported by Pavlic et al., 2004 and Burgess et al., 2006. For molecular identification, a multi-locus sequence analysis approach was used. The Internal Transcribed Spacers (ITS) region, elongation factor 1 alpha (EF1-α) and β-tubulin genes were amplified and sequenced using ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn, 1999), and Bt2a/Bt2b (Glass and Donaldson, 1995) primers respectively. The sequences of isolate MFT9 were deposited to GenBank (MW115977 (ITS), (MW118595 (EF1-α) and MW118596 (β-tubulin). All sequences showed more than 99.5% similarity with reported sequences of Lasiodiplodia theobromae isolate IBL340 with accessions numbers KT247466 (ITS), KT247472 (EF1-α) and KT247475 (β-tubulin). Phylogenetic reconstruction based on Maximum Likelihood, using Mega X (Kumar et al., 2018), grouped isolate MFT9 with isolates representing L. theobromae. Pathogenicity testing was performed on 18 fresh, healthy, medium-sized mango fruits for each treatment to fulfill Koch’s postulate. The fruits were disinfested with 1% NaClO and punctured with a sterilized needle to create approximately 2mm2 wounds for inoculation. Fruits were inoculated with 15µL of fresh inoculum (107 spores/mL) from isolate MFT9. Control fruits were inoculated with 15µL of SDW and both the inoculated and control fruits were incubated at 28°C for seven days of post inoculation. The rot lesions appeared at the point of inoculation and gradually spread on the fruit surface. The symptoms were similar to the symptoms observed on the original fruit samples (Fig. 2). This experiment was conducted three times under the same conditions, with control fruits remaining asymptomatic each time. The re-isolated fungus was identified as L. theobromae based on symptoms and morpho-molecular analysis, described above. L. theobromae is also reported as a causal agent responsible for a postharvest stem-end rot on Coconut in China (Zhang, et al., 2019). To our knowledge, this is the first report of L. theobromae causing postharvest stem-end rot of mango fruit in China. This finding suggests that L. theobromae is a potential problem for mango fruit production in China.


Sign in / Sign up

Export Citation Format

Share Document