scholarly journals First Report of Sclerotinia sclerotiorum Causing Leaf Blight in Sugar Beet (Beta vulgaris) in North Dakota, U.S.A.

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1258-1258 ◽  
Author(s):  
M. F. R. Khan ◽  
M. Z. R. Bhuiyan ◽  
K. Chittem ◽  
F. Shahoveisi ◽  
M. E. Haque ◽  
...  
Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3278-3278 ◽  
Author(s):  
M. F. R. Khan ◽  
M. E. Haque ◽  
R. Brueggeman ◽  
S. Zhong ◽  
M. Z. R. Bhuiyan ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Parvin MS ◽  
◽  
Haque ME ◽  

Sugar beet (Beta vulgaris) sowing to post-harvest is continuously encountered with wide range of soil-borne pathogens including Rhizoctonia, Fusarium, Aphanomyces, Rhizopus, Pythium, Talaromyces, Clonostachys, and Geotrichum. These evident to cause substantial qualitative and quantitative losses. In May/2019, dark brown to black irregular water-soaked lesions were observed near the soil-line (constriction of hypocotyl) on sugar beet seedlings in Prosper (46.9630° N, 97.0198° W), North Dakota (Figure 1). Approximately 2-5% of disease incidence was recorded. Small pieces (10 mm²) of symptomatic root tissues were cut from the margins between infected and healthy tissue, and disinfected with 10% sodium hypochlorite for 1 min, rinsed three times with autoclaved water, and then placed on Corn Meal Agar (CMA) amended with pimaricin-vancomycin- Pentachloronitrobenzene (PCNB) [1] for incubation at 20°C in the dark for 5 days. Subsequently, single hyphal tips were transferred to Water Ager (WA) (Figure 2). In total, 8 isolates were developed from diseased beets. Isolates were developed light fungal biomass on WA in 14 days. Microscopically, hyphal swelling and globular or lemon shaped sporangia were present (Figure 3). Based on macroscopic and microscopic characteristics, the fungus was speculated to be Oomycetes genus [2]. Determining the species, genomic DNAs of 8-isolates were used for Polymerase Chain Reaction (PCR) using ITS- 6 and ITS-7 primer. PCR amplicons were cleaned with E.Z.N.A ®Cycle Pure Kit, OMEGA, and 8 samples were sent for Sanger sequencing to GenScript (Piscataway, NJ) [3]. The sequences were identical, and standard nucleotide blast search showed 99% sequence identity to Globisporangium ultimum (Genbank accessions: MK794771.1). The nucleotide sequence was deposited in Genbank (MN086365.1). Phyto-pathogenicity testing was performed with 2-week old sugar beet susceptible cultivar which was inoculated with a 2-week old WA culture (5 mm² mycelial cut). This plug/mycelial cut was placed at a 1/2-inch depth close to seedlings in each plastic pot (27 x 13 x 13 cm, T.O. Plastics, Inc.; Clearwater, MN, USA) which was filled with vermiculite and perlite mixer (PRO-MIX FLX) amended with osmocote (N-P-K:15-9-12) fertilizer (Scotts Company; Marysville, OH). The pots were arranged in completely randomized design. The study was done twice with four replicates and 10 plants per replicate. One week of post-inoculation, 40% of the inoculated plants developed similar damping-off symptoms as discussed above (Figure 4), whereas mock-inoculated plants were healthy. Pathogen re-isolated from the infected hypocotyl tissue and was further confirmed morphologically and molecularly, fulfilled Koch’s postulates. Globisporangium species complex were previously reported to cause damping-off on aleppo pine (Pinus halepensis Mill) in Australia, Africa, Mediterranean, rootcrown rot of pepper (Capsicum annuum) in Turkey and alfalfa [4- 7]. To our best knowledge, this is the first report of Globisporangium ultimum causing constriction on hypocotyl of sugar beet seedlings in North Dakota, USA.


2017 ◽  
Vol 36 ◽  
pp. 5 ◽  
Author(s):  
N. Rosenzweig ◽  
L.E. Hanson ◽  
D. Pratt ◽  
J. Stewart ◽  
P. Somohano

Plant Disease ◽  
2020 ◽  
Author(s):  
Mohamed Fizal Khan ◽  
Md. Ehsanul Haque ◽  
Peter Hakk ◽  
Md. Ziaur Rahman Bhuyian ◽  
Yangxi Liu ◽  
...  

Sugar beet (Beta vulgaris L.) is a globally important crop for sugar. In May 2019, sugar beet seedlings were observed with wilting, lodging and a few were dead in Glendive (46.970170, -104.838204), Montana. Symptoms appeared near the soil line as the stem (hypocotyl) turned dark brown to black with characteristic thread-like infections which resembled Pythium damping-off. It affected approximately 10% of the growing seedlings. Diseased sugar beet root tissues were excised with a sterile scalpel and small pieces (10 mm²) were surface sterilized with 70 % ethanol for 30 seconds, rinsed twice with autoclaved water, air-dried and transferred to potato dextrose agar (PDA) media amended with pimaricin-vancomycin-PCNB (Conway, 1985). Four plates were incubated at 25° C in the dark (Masago et al., 1977) and two weeks later white, dense colony was observed (Zhang et al., 2018). The terminal smooth, globose oogonia (average 18.5 µm in diameter) and antheridia (average 14.5 × 9.5 µm) extended below the oogonium were observed via VWR N. A. 0.30 microscope. The morphological features of the four isolates were consistent with Pythium ultimum Trow (Watanabe, 2002). Genomic DNAs (NORGEN BIOTEK CORP, Fungi DNA Isolation Kit #26200) of four isolates were used for polymerase chain reaction (PCR) with the ITS6-ITS7 primers (Taheri et al., 2017). Subsequently, PCR products were flushed by E.Z.N.A ®Cycle Pure Kit, OMEGA and four samples were sent for Sanger sequencing to GenScript (GenScript, Piscataway, NJ). The sequences were identical and submitted to GenBank, NCBI (accession no. MN398593). The NCBI Blast analysis showed 100% sequence homology to Pythium ultimum with the following GenBank accessions; KF181451.1, KF181449.1 and AY598657.2. Pathogenicity test was done on sugar beet with the same isolates in the greenhouse. Two week old, pythium culture was mixed with vermiculite and perlite mixer (PRO-MIX FLX) in the plastic trays (24´´ x 15´´× 3˝), (22 °C, 75% Relaive Humidity). Sterile water (500 ml/each tray) was added in the mixer to provide sufficient moisture. Twenty seeds of cv. Hilleshog 4302 were sown in the tray, and the trays were replicated thrice with inoculated and mock treatments. Plants were watered as needed to maintain adequate soil moisture conducive for plant growth and disease development. Seven days after sowing, 50% and 100% germination was observed in the inoculated and control treatments, respectively. At the beginning of the second week, 30% post-emergence damping-off was observed in the inoculated treatments. Diseased seedlings were gently pulled out from the pots where similar symptoms were observed in the sugar beet seedlings as described previously. No incidence of disease was observed in mock-treated seedlings. Consistent reisolation of Pythium ultimum was morphologically and molecularly confirmed from the diseased seedlings, thus fulfilling Koch’s postulates. Pythium spp identification is prerequisite to develop effective management of pre and post-emergence damping-off. Pythium ultimum was previously reported in Nebraska to cause sugar beet seed rot and pre-emergence damping-off (Harvenson 2006). To our knowledge, this is the first report of Pythium ultimum causing damping-off on sugar beet in the Sidney factory district in Montana.


2021 ◽  
pp. PHP-02-21-0048-
Author(s):  
Mohamed F. R. Khan ◽  
Md. Ziaur Rahman Bhuiyan ◽  
Yangxi Liu ◽  
Dilip Lakshman ◽  
Mark Bloomquist

Minnesota is the top sugar beet (Beta vulgaris L.) producing state in the United States. In 2020, sugar beet plants were observed for the first time in which the two to three oldest leaves had light brown to dark brown necrotic leaf lesions that eventually became yellow or brown and died but remained attached to the plant. Morphological data and sequences of internal transcribed spacer regions identified the pathogen as Sclerotinia sclerotiorum. Because over 90% of the plants in identified fields were infected it was difficult to quantify loss in yield or quality caused by this disease. All fields with symptomatic plants had soybean or edible beans in the rotation. One field planted to several different varieties indicated that all the varieties were symptomatic. It will be useful to determine any economic loss caused by S. sclerotiorum and any known varietal resistance to this pathogen.


Plant Disease ◽  
2018 ◽  
Vol 102 (8) ◽  
pp. 1669-1669 ◽  
Author(s):  
V. Chapara ◽  
K. Chittem ◽  
L. E. del R. Mendoza

Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 494-494 ◽  
Author(s):  
L. E. Hanson ◽  
J. M. McGrath

Powdery mildew (Erysiphe polygoni DC [synonym E. betae {Vanha} Weltzien]) affects several different crops of Beta vulgaris, including sugar beet, Swiss chard, and table beet. The disease has been prevalent in many sugar beet-growing areas of the United States since the first major epidemic in beet in 1974 (3). Powdery mildew in the United States was primarily associated with the asexual stage of the pathogen until the perfect stage was found, first in western states such as Idaho and Colorado (2), then in more Midwestern states such as Nebraska, and most recently in North Dakota (1). Similar to North Dakota, powdery mildew has not been a major problem in the Michigan growing area. It does appear sporadically, particularly on sugar beets that have not been sprayed to control other foliar diseases. In 2010, powdery mildew infection on sugar beet was observed in late August in a field in the Saginaw Valley of Michigan. Plants were inspected periodically for the presence of the sexual stage. In early October, sugar beet and Swiss chard plants with heavy powdery mildew infection also were observed at the Michigan State University (MSU) Horticultural Demonstration Gardens in East Lansing and on sugar beet at the MSU Plant Pathology and Botany research farms. On both the Saginaw Valley sugar beet and Swiss chard on the MSU campus, ascomata were observed on a few leaves in mid-October. No ascomata were found on sugar beet at the other two locations. The majority of ascomata were dark brown to black when located, although a few light tan ascomata were observed on the Swiss chard. Ascomata varied from 70 to 100 μm in diameter. Asci contained one to four hyaline or golden yellow ascospores similar to those described in other growing regions on sugar beet (1,2). No ascomata had been detected on powdery mildew-infected sugar beet from either the Saginaw Valley or the MSU research farms the previous two years. These results appear to indicate a spread of the ability to form the perfect stage eastward from the western United States. This may be due to movement of one mating type because E. polygoni has been reported to be heterothallic on some crops (4). The presence of the perfect stage indicates that sexual recombination could occur in E. polygoni on Beta species in Michigan, creating the potential for more rapid development of new strains that might vary in fungicide sensitivity and response to host resistance. References: (1) C. A. Bradley et al. Plant Dis. 91:470, 2007 (2) J. J. Gallian and L. E. Hanson. Plant Dis. 87:200, 2003. (3) E. G. Ruppel. Page 13 in: Compendium of Beet Disease and Insects. E. D. Whitney and J. E. Duffus, eds. The American Phytopathological Society, St. Paul, MN, 1986. (4) C. G. Smith. Trans. Br. Mycol. Soc. 55:355, 1970.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 470-470 ◽  
Author(s):  
C. A. Bradley ◽  
P. Burlakoti ◽  
R. S. Nelson ◽  
M. F. R. Khan

Powdery mildew caused by Erysiphe polygoni was widespread on sugar beet (Beta vulgaris) in North Dakota during 2006. This disease is generally not prevalent in the state because of the application of fungicides, which also have efficacy against powdery mildew, for control of Cercospora leaf spot caused by Cercospora beticola. Because Cercospora leaf spot pressure was low in 2006, fewer fungicide applications were made in the state, thus allowing for more observations of powdery mildew. Leaf samples from four fields near Amenia, Minto, Prosper, and St. Thomas, ND were collected in mid-September to look for the perfect stage of E. polygoni, since this has recently been observed in Idaho, Colorado, Montana, and Nebraska (1–3). Only the leaves collected from the field near Amenia had visible immature (yellow and brown) globose ascomata; ascomata were not observed on the leaves collected in the other fields. Additional leaves were collected from the field near Amenia in early October; these leaves had immature and mature (black) globose ascomata that were 70 to 105 μm in diameter. Mature ascomata contained ovoid to elliptic asci with one to four hyaline-to-golden pigmented ascospores (20 to 25 × 12 to 20 μm). The color, shape, and size of ascomata, asci, and ascospores were similar to previously reported observations (1–4). The prevalence of the perfect stage in North Dakota is unknown, since no statewide surveys were conducted. To our knowledge, this is the first report of the perfect stage of E. polygoni on sugar beet in North Dakota. The occurrence of the perfect stage could lead to a means for overwintering in this area. Because of the means for genetic recombination, the risk of fungicide resistance and the development of races may increase. References: (1) J. J. Gallian and L. E. Hanson. Plant Dis. 87:200, 2003. (2) R. M. Harveson. Plant Dis. 88:1049, 2004. (3) B. Jacobsen et al. Plant Dis. 89:1362, 2005. (4) E. G. Ruppel. Powdery mildew. Pages 13–15 in: Compendium of Beet Diseases and Insects. E. D. Whitney and J. E. Duffus, eds. The American Phytopathological Society. St. Paul, MN, 1986.


2012 ◽  
Vol 26 ◽  
pp. 3 ◽  
Author(s):  
W.W. Kirk ◽  
L.E. Hanson ◽  
G.D. Franc ◽  
W.L. Stump ◽  
E. Gachango ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document