scholarly journals A Pictorial Disease Severity Key and the Relationship Between Severity and Incidence for Black Root Rot of Pansy Caused by Thielaviopsis basicola

Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1394-1399 ◽  
Author(s):  
Warren E. Copes ◽  
Katherine L. Stevenson

A pictorial key was developed and the relationship between disease severity (S) and incidence (I) was examined to aid in the assessment of black root rot of pansy caused by Thielaviopsis basicola. The key consisted of photographs of root segments that represented nine disease severity levels ranging from 1 to 91%. Pansies that had received different fertility treatments, as part of seven separate experiments, were inoculated with T. basicola. Four weeks after inoculation, roots were washed, and incidence and severity of black root rot were visually assessed using a grid-line-intersect method. Disease incidence ranged from 1.3 to 100%, and severity ranged from 0.1 to 21.4% per plant. Four different mathematical models were compared to quantitatively describe the I-S relationship for the combined data from all seven experiments. Although all models provided an adequate fit, the model that is analogous to the Kono-Sugino equation provided the most reliable estimate of severity over the entire range of disease incidence values. The predictive ability and accuracy of this model across data sets was verified by jackknife and cross-validation techniques. We concluded that incidence of black root rot in pansy can be assessed more objectively and with greater precision than disease severity and can be used to provide reliable estimates of disease severity based on derived regression equations that quantify the I-S relationship for black root rot.

Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1368-1368 ◽  
Author(s):  
S. T. Koike

In 2005 and 2006, field-grown iceberg lettuce (Lactuca sativa) in California's coastal Salinas Valley (Monterey County) was affected by a previously unreported disease. Symptoms were observed on iceberg lettuce at the post-thin rosette stage (8 to 12 leaves). Plants were stunted and slightly chlorotic. Fine feeder roots had numerous, small (4 to 8 mm long), elongated, dark brown-to-black lesions. Larger secondary roots and taproots lacked lesions. No vascular discoloration was present. Isolations from root lesions consistently resulted in gray fungal colonies that formed catenulate, cylindrical, thin-walled, hyaline endoconidia and catenulate, subrectangular, thick-walled, dark aleuriospores. The fungus was identified as Thielaviopsis basicola (2). Conidial suspensions (5.0 × 105) of eight isolates from iceberg lettuce were used for pathogenicity tests. Iceberg cv. Ponderosa and romaine cv. Winchester were grown for 3 weeks in soilless peat moss rooting mix. Roots of 20 plants per cultivar were washed free of the rooting mix and soaked in conidial suspensions for 5 min. Plants were repotted and grown in a greenhouse. Control plant roots were soaked in sterile distilled water (SDW). After 3 weeks, inoculated iceberg exhibited slight chlorosis in comparison with control plants. Feeder roots of all iceberg plants inoculated with the eight isolates exhibited numerous black lesions and T. basicola was reisolated from these roots. Romaine lettuce, however, did not show any foliar symptoms. Small segments of roots had tan-to-light brown discoloration and T. basicola was occasionally reisolated (approximately 40% recovery). Roots of control iceberg and romaine showed no symptoms. Results were similar when this experiment was repeated. To explore the host range of T. basicola recovered from lettuce, two isolates were prepared and inoculated as described above onto 12 plants each of the following: iceberg lettuce (cv. Ponderosa), bean (cv. Blue Lake), broccoli (cv. Patriot), carrot (cv. Long Imperator #58), celery (cv. Conquistador), cotton (cv. Phy-72 Acala), cucumber (cv. Marketmore 76), green bunching onion (cv. Evergreen Bunching), parsley (cv. Moss Curled), pepper (cv. California Wonder 300 TMR), radish (cv. Champion), spinach (cvs. Bolero and Bossanova), and tomato (cv. Beefsteak). Control plant roots of all cultivars were soaked in SDW. After 4 weeks, only lettuce and bean roots had extensive brown-to-black lesions, from which the pathogen was consistently resiolated. Roots of cotton, pepper, spinach, and tomato had sections of light brown-to-orange discoloration; the pathogen was not consistently recovered from these sections. All other species and the control plants were symptomless. This experiment was repeated with similar results except that inoculated peppers were distinctly stunted compared with control plants. To my knowledge, this is the first report of black root rot caused by T. basicola on lettuce in California. Disease was limited to patches along edges of iceberg lettuce fields; disease incidence in these discrete patches reached as high as 35%. Affected plants continued to grow but remained stunted in relation to unaffected plants and were not harvested. Black root rot of lettuce has been reported in Australia (1); that report also showed that lettuce cultivars vary in susceptibility to T. basicola and isolates from lettuce were highly aggressive on bean but not on many other reported hosts of this pathogen. References: (1) R. G. O'Brien and R. D. Davis. Australas. Plant Pathol. 23:106, 1994. (2) C. V. Subramanian. No. 170 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1968.


Plant Disease ◽  
1998 ◽  
Vol 82 (4) ◽  
pp. 447-447 ◽  
Author(s):  
S. T. Koike ◽  
D. M. Henderson

In 1997, greenhouse-produced transplants of tomato (Lycopersicon esculentum) exhibited stunting, yellowing of leaves, and lack of vigorous growth. Roots of affected plants had numerous small (2 to 10 mm long), brown lesions. Isolations from symptomatic roots onto acidified potato dextrose agar and TBM-V8 medium (1) consistently resulted in gray fungal colonies that formed catenulate, cylindrical, hyaline endoconidia and catenulate, subrectangular, thick-walled, dark aleuriospores. The fungus was identified as Thielaviopsis basicola (Berk. & Broome) Ferraris based on colony characteristics and conidial morphology. Pathogenicity was tested by producing endoconidial suspensions of representative isolates and applying them as root drenches to 2-month-old tomato (cv. Early Girl) plants in soil-less, peat-based potting mix. Sterile, distilled water was applied to control plants. After 14 days in a greenhouse, symptoms similar to those originally observed developed and the pathogen was reisolated from lesions on the roots. Control plants developed no disease symptoms. The test was repeated and the results were similar. This is the first documentation of black root rot caused by T. basicola on tomato transplants in California. Disease incidence reached as high as 50 to 60% in certain plantings. Reference: (1) J. N. C. Maduewesi et al. Phytopathology 66:526, 1976.


2006 ◽  
Vol 32 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Jefferson Fernandes do Nascimento ◽  
Laércio Zambolim ◽  
Francisco Xavier Ribeiro do Vale ◽  
Paulo Geraldo Berger ◽  
Paulo Roberto Cecon

Four cultivars and 21 lines of cotton were evaluated for resistance to ramulose (Colletotrichum gossypii f. sp. cephalosporioides) in a field where the disease is endemic. The seeds of each genotype were planted in 5 x 5 m plots with three replications. The lines CNPA 94-101 and 'CNPA Precoce 2'were used as standard susceptible and resistant references, respectively. The disease incidence (DI) was calculated from the proportion of diseased plants in the plot. The disease index (DIn) was calculated from the disease severity using a 1 to 9 scale, and was evaluated at weekly intervals starting 107 days after emergence. The data collected was used to calculate the area under disease progress curve (AUDPC). In general, the DIn increased linearly with time and varied from 20.0 to 57.1 and AUDPC from 567 to 1627 among the genotypes which could be clustered in to two distinct groups. The susceptible group contained two cultivars and nine lines and the resistant group contained one cultivar and 12 lines. The relationship between disease index and evaluation times was linear for the 25 genotypes tested. The line CNPA 94-101, used as susceptible standard, was the most susceptible with an average DI = 83.4, DIn = 57.1 and AUDPC = 1627.7. The line CNPA 96-08 with DI = 37.8, DIn = 20.0 and AUDPC = 567.7 was the most resistant one. Among the commercial cultivars 'IAC 22' was the most susceptible and 'CNPA Precoce 2', used as resistant standard was the most resistant. The variability in virulence of the pathogen was studied by spray inoculating nine genotypes with conidial suspensions (10(5)/mL) of either of the 10 isolates. The disease severity was evaluated 30 days later using a scale of 1 to 5. The virulence of the isolate was expressed by DIn. All the isolates were highly virulent but their virulence avaried for several genotypes and could be clustered in two distinct groups of less and more virulent isolates. The isolate MTRM 14 from Mato Grosso was the least virulent while Minas Gerais was the most virulent, with DIn of 6.36 and 46.47, respectively. In this experiment the line HR 102 and the cultivar 'Antares' were the most resistant ones with DIns of 18.32 and 19.14, respectively.


2021 ◽  
Author(s):  
Renata Lebecka ◽  
Jadwiga Śliwka ◽  
Anna Grupa-Urbańska ◽  
Katarzyna Szajko ◽  
Waldemar Marczewski

AbstractSoft rot is a bacterial disease that causes heavy losses in potato production worldwide. The goal of this study was to identify quantitative trait loci (QTLs) for potato tuber resistance to bacteriumDickeya solaniand for tuber starch content to study the relationship between these traits. A highly resistant diploid hybrid of potato was crossed with a susceptible hybrid to generate the F1 mapping population. Tubers that were wound-inoculated with bacteria were evaluated for disease severity expressed as the mean weight of rotted tubers, and disease incidence measured as the proportion of rotten tubers. Diversity array technology (DArTseq™) was used for genetic map construction and QTLs analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different than the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance toDickeya solanion potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programs. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.


1993 ◽  
Vol 42 (5) ◽  
pp. 820-823 ◽  
Author(s):  
L. BØDKER ◽  
N. LEROUL ◽  
V. SMEDEGAARD-PETERSEN

2013 ◽  
Vol 371 (1-2) ◽  
pp. 397-408 ◽  
Author(s):  
Juliana Almario ◽  
Martina Kyselková ◽  
Jan Kopecký ◽  
Markéta Ságová-Marečková ◽  
Daniel Muller ◽  
...  

HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 693-695 ◽  
Author(s):  
Amal de Silva ◽  
Keith Patterson ◽  
Craig Rothrock ◽  
Ron McNew

Phytophthora root rot is a severe disease on blueberry (Vaccinium corymbosum L.) in poorly drained soils. Little is known about how mulching and frequent waterlogging affect disease severity in blueberries. Phytophthora cinnamomi Rands was grown on rice hulls, which were incorporated into the soil at the rate of 10% (v:v). Waterlogging conditions were imposed for 48 hours 1 week after planting on mulched and nonmulched blueberry plants at weekly, biweekly, and monthly intervals for a total of 3 months. Control plants were not subjected to flooding. The severity of Phytophthora root rot increased with time. Significant linear relationships were found between flooding interval and disease severity rating of shoot, percentage of root infection, and shoot and root dry weights of plants. Disease symptoms were minimal in control plants, but shoot disease rating and percentage of root infection were high in mulched and nonmulched plants that were flooded every week. Shoot and root dry weights were higher in 1997 than in 1996. In 1996, mulched plants had higher shoot dry weights than did nonmulched plants. Disease incidence was higher with weekly and biweekly flooding than with monthly or no flooding. However, mulching did not affect root infection.


Sign in / Sign up

Export Citation Format

Share Document