scholarly journals Report of Leaf Blight on Washington Lupine (Lupinus polyphyllus) Caused by Rhizoctonia solani AG 4 in Italy

Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 429-429
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Lupinus polyphyllus (Leguminosae), Washington lupine, is a perennial herbaceous plant. In March 2008, in a campus greenhouse at the University of Torino, Grugliasco (northern Italy), a leaf blight was observed on 20% of potted 30-day-old plants. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Severely infected plants died. Plants were grown in a sphagnum peat/perlite/clay (70:20:10) substrate at temperatures between 18 and 25°C and relative humidity of 60 to 80%. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani (4) was consistently and readily recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 20 ± 1°C appeared light brown, rather compact, and exhibited radial growth. The isolates of R. solani successfully anastomosed with tester isolate AG 4 (AG 4 RT 31, obtained from tobacco plants). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (3). Pairings were also made with tester isolates AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI with no anastomoses observed between the recovered and tester isolates. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 660-bp fragment showed 100% homology with the sequence of R. solani. The nucleotide sequence has been assigned GenBank Accession No. FJ486272. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Plants of 30-day-old L. polyphyllus were grown in 10-liter containers (10 plants per container) on a steam disinfested sphagnum peat/perlite/clay (70:20:10) medium. Inoculum, consisting of an aqueous suspension of mycelium disks prepared from PDA cultures (5 g of mycelium per plant), was placed at the collar of plants. Plants inoculated with water and PDA fragments alone served as control treatments. Three replicates were used. Plants were maintained in a greenhouse at temperatures between 18 and 23°C. First symptoms, similar to those observed in the nursery, developed 10 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was repeated twice. The susceptibility of L. polyphyllus to R. solani was reported in Poland (2). This is, to our knowledge, the first report of leaf blight of L. polyphyllus caused by R. solani in Italy. The importance of the disease is at the moment limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) W. Blaszczak. Rocz. Nauk. Roln. Ser A 85:705, 1962. (3) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (4) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.

Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 433-433 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips. It can also be grown for cut flower production. In April of 2008, in several nurseries located near Biella (northern Italy), a leaf blight was observed on 10 to 15% of potted 30-day-old plants grown on a sphagnum peat substrate at 15 to 20°C and relative humidity of 80 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded over several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and abscised. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates obtained from affected plants successfully anastomosed with tester isolate AG 4 (AG 4 RT 31, obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI with no anastomoses observed between the recovered and tester isolates. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 648-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534555. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Five plants of 30-day-old A. flabellata were grown in 3-liter pots. Inoculum consisting of an aqueous suspension of PDA and mycelium disks (5 g of mycelium + agar per plant) was placed at the collar of plants. Five plants inoculated with water and PDA fragments alone served as control treatments. Plants were maintained in a greenhouse at temperatures between 20 and 24°C. The first symptoms, similar to those observed in the nursery, developed 7 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. The presence of R. solani AG1-IB on A. flabellata has been reported in Japan (4), while in the United States, Rhizoctonia sp. is described on Aquilegia sp. (3). This is, to our knowledge, the first report of leaf blight of A. flabellata caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) E. Imaizumi et al. J. Gen. Plant Pathol. 66:210, 2000.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1071-1071 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Woodland sage (Salvia nemorosa L.; Lamiaceae) is a hardy herbaceous perennial plant that is easy to grow and propagate and is used in parks and grown as potted plants. During the summer of 2009 in a nursery near Torino in northern Italy, a leaf blight was observed on 30-day-old plants of cv. Blau Koenigin grown in pots under shade. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along leaf margins. Lesions expanded along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and clung to the shoots. No symptoms were observed on the roots. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter of streptomycin sulfate. A fungus with morphological characters of Rhizoctonia solani (3) was consistently recovered. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and with radial growth. Sclerotia were irregular and measured between 0.5 and 2 mm. Pairings were made with tester isolates of AG 1, 2, 3, 4, 5, 6, 7, 11, and AG B1. The only successful anastomosis was with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (2). The description of sclerotia of the isolate AG1 was typical for subgroup 1A Type 2 (3). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 688 bp showed a 100% homology with the sequence of R. solani AG-1A and the nucleotide sequence has been assigned (GenBank Accession No. HM044764). For pathogenicity tests, the inoculum of one isolate of R. solani from the nursery was prepared by growing the pathogen on PDA for 7 days. The foliage of 30-day-old potted plants of S. nemorosa cv. Blau Koenigin was artificially inoculated with an aqueous suspension of PDA and mycelium fragments (1 g per mycelium per plant) prepared from cultures with a blender. Plants were covered with plastic bags for 3 days. Plants inoculated with water and PDA fragments alone served as control treatments. Plants were maintained in a glasshouse at 20 to 25°C. The first symptoms, similar to those observed in the nursery, developed 7 days after foliar inoculation. R. solani was consistently reisolated from infected leaves. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. To our knowledge, this is the first report of leaf blight of S. nemorosa caused by R. solani in Italy as well as worldwide. The importance of the disease is still unknown. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Page 35 in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, the Netherlands, 1996. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 432-432 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Hosta fortunei (Liliaceae) is used in semishaded areas of gardens for its lavender-colored flowers produced in midsummer. In April of 2008, in a greenhouse at the University of Torino, located in Grugliasco (northern Italy), a leaf blight was observed on 15% of potted 60-day-old plants growing at temperatures ranging between 20 and 25°C and relative humidity of 60 to 90%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, and clung to the shoots. Severely infected plants died. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter streptomycin sulfate. A fungus with the morphological characters of Rhizoctonia solani (4) was consistently recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 22 ± 1°C appeared light brown, rather compact, and had radial growth. Sclerotia were not present. Isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 4 (AG 4 RT 31 obtained from tobacco plants). Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates of AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI, but no anastomosis was observed. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 646-bp fragment showed a 100% homology with the sequence of R. solani AG-4 AB000018. The nucleotide sequence has been assigned GenBank Accession No. FJ 534556. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Six-month-old plants of H. fortunei were grown in 1-liter pots. Inoculum, which consisted of an aqueous suspension of PDA and mycelium disks (10 g of mycelium per pot), was placed at the collar of plants. Plants inoculated with water and PDA fragments alone served as control treatments. Five plants per treatment were used. Plants were maintained in a growth chamber at 20 ± 1°C. The first symptoms, similar to those observed in the nursery, developed 15 days after inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. R. solani was reported on plants belonging to the genus Hosta in the United States (3). This is, to our knowledge, the first report of leaf blight of H. fortunei caused by R. solani in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (3) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathology Society, St Paul, MN, 1989. (4) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1206-1206
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Heuchera sanguinea (Saxifragaceae), coral bells or alum root, is an herbaceous perennial used in parks and gardens and sometimes grown in pots for its heart-shaped leaves and upright panicles of bright red, tiny flowers produced in late spring. At the end of fall 2006, a leaf blight was observed on 50% of a crop of potted 45-day-old plants grown in a sphagnum peat/clay/perlite (70:20:10) substrate at temperatures ranging between 20 and 25°C in a nursery. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. For several days, lesions expanded along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Mycelia were often seen on and suspended between leaves. Blight progressed up the plant from the leaves to the shoot tip. Affected plants often died leaving wide empty areas. Diseased tissue was disinfected for 1 min in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characters of Rhizoctonia solani was consistently and readily recovered, then transferred and maintained in pure culture (3). The isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (1). Pairings were also made with tester isolates of AG 2, 3, 4, 5, 6, 7, and 11 with no anastomoses observed between the recovered and tester isolates. Sclerotia were of uniform size with a diameter from 0.4 to 4 mm and sometimes joined laterally. The description of sclerotia was typical for subgroup 1A Type 2 (2). For pathogenicity tests, the inoculum of R. solani was prepared by growing three isolates of the pathogen on PDA for 7 days. Plants of 30-day-old H. sanguinea were grown in 10-liter containers (6 plants per container) on a steam disinfested peat/clay/perlite substrate (70:20:10)). Inoculum consisted of an aqueous suspension of PDA and mycelium disks (1 cm2 of mycelium per plant) and was placed at the base of the plant stems and on leaves. Plants inoculated with water and PDA fragments alone served as control treatments. Three replicates were used. Plants were maintained in a growth chamber at 24°C with 12 h of light/dark. The first symptoms, similar to those observed in the nursery, developed 12 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of leaf blight of H. sanguinea caused by R. solani in Italy and probably in the world. References: (1) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease control. Kluwer Academic Publishers, the Netherlands, 1996. (2) R. T. Sherwood. Phytopathology, 59:1924, 1969. (3) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 318-318
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Digitalis purpurea (Scrophulariaceae), foxglove, is used in flower gardens. In the spring of 2008, leaf blight was observed in a nursery near Biella (northern Italy) on 30% of potted 30-day-old plants grown in a peat substrate at temperatures from 20 to 25°C and relative humidity at 75 to 80%. Semicircular, water-soaked lesions developed on leaves just above the soil line at the blade-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was affected. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily recovered, then transferred and maintained in pure culture (4). The isolates of R. solani obtained from affected plants successfully anastomosed with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (2). Pairings were also made with tester isolates AG 2, 3, 4, 6, 7, 11, and AG BI and anastomosis was not observed. Ten-day-old colonies grown on PDA appeared light brown, rather compact, and radial. Numerous sclerotia of uniform size (0.5 to 3 mm in diameter) and sometimes joined laterally were formed. Descriptions of mycelium and sclerotia were typical for subgroup IA Type 2 (4). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 724-bp fragment showed a 99% homology with the sequence of R. solani (GenBank Accession No. EU591800). The nucleotide sequence has been assigned GenBank Accession No. FJ467490. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Plants of 30-day-old D. purpurea were grown in 10-liter containers (6 plants per container) in a steam disinfested peat/clay/perlite (70:20:10) substrate. Disks of PDA cultures were placed on leaves (1 cm2 of mycelium per plant). Plants inoculated with PDA alone served as control treatments. Three replicates were used. Plants were maintained in a growth chamber at 24 ± 1°C with 12 h light/dark. First symptoms developed 12 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was repeated twice. R. solani was isolated from a small percentage of infected seeds of D. purpurea in India (3). This is, to our knowledge, the first report of leaf blight of D. purpurea caused by R. solani in Italy as well as in Europe. The spread of R. solani in nurseries might cause a decrease in trade. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, the Netherlands, 1996. (3) K. K. Janardhanan and D. Ganguly. Indian Phytopathol. 16:379, 1963. (4) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 142-142 ◽  
Author(s):  
Q. Bai ◽  
Y. Xie ◽  
X. Wang ◽  
Y. Li ◽  
J. Gao ◽  
...  

Rhodiola sachalinensis A. Bor (family Crassulaceae), a perennial herbaceous plant, is distributed mainly in the mountainous areas of China, Japan, Korea, and Russia. It is widely used as a traditional Chinese medicine with adaptogenic properties, cardiopulmonary protective effects, and central nervous system activities (3). Currently, it is extensively cultivated in northeastern China. In August 2010, widespread (>60% of plants were symptomatic) damping-off was observed in a seedling field in Linjiang, China. Leaves and stems near the ground were affected first, with dark lesions forming on the stem and the lowest leaves exhibiting wilt. The wilt spread rapidly over the entire plant with leaves becoming grayish brown and water soaked and then turned black and died. Root rot, defoliation, and damping-off were also observed. Six isolates with morphological characteristics of Rhizoctonia solani Kühn were isolated from symptomatic stems when plated on potato dextrose agar (PDA). Mycelium was branched at right angles with a septum near the branch and a slight constriction at the branch base. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia after 8 days on PDA. Hyphal cells removed from cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400 magnification. The internal transcribed spacer (ITS) region of the nuclear rDNA was amplified by using the primers ITS4/ITS5 (2). The ITS sequences (715 bp) were identical in these six isolates (GenBank Accession No. FR878087) and had 100% sequence identity with R. solani AG-4 HG-II (GenBank Accession No. HQ629873) along with numerous other accessions from this AG subgroup. Pathogenicity tests were performed on healthy, potted seedlings of R. sachalinensis. Twenty plants were inoculated near the base of the stem with a 0.6-cm-diameter mycelial plug from 3-day-old PDA cultures for each isolate. Twenty plants inoculated with only PDA plugs served as controls. The plants were covered with plastic bags and kept in a greenhouse at 20 to 25°C for 72 h. All inoculated plants showed characteristic symptoms as previously observed in the seedling field 13 days after inoculation, while control plants remained healthy. R. solani AG-4 HG-II was reisolated from symptomatic tissues on inoculated plants. To our knowledge, this is the first report of R. solani AG-4 HG-II causing damping-off on R. sachalinensis in China. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) D. E. L. Cooke et al. Mycol. Res. 101:667, 1997. (3) T. F. Yan et al. Conserv. Genet. 4:213, 2003.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 880-880
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips that is largely present in gardens. It can also be grown for cut flower production. In September of 2008 and 2009, in a private garden located near Biella (northern Italy), a leaf blight was observed. Leaves of infected plants showed extensive, irregular, brown, necrotic lesions, which were slightly sunken with a well-defined border and surrounded by a violet-brown halo. A hole frequently appeared in the center of dried tissues. Lesions, initially measuring 0.5 mm, later expanded up to 15 mm in diameter and eventually coalesced to cover the entire leaf, which curled without falling. At a later stage, stems were also affected, causing death of the apical part of the plant. The disease affected 90% of the plants in the garden. Dark brown, subglobose pycnidia, 116 to 145 μm, containing light gray, ellipsoid, nonseptate conidia measuring 9.0 to 16.2 × 2.6 to 4.2 (average 12.7 × 3.4) μm were observed on symptomatic tissue. On the basis of these morphological characteristics, the fungus was related to the genus Phoma (2). Diseased tissue was excised from the margin of lesions, rinsed in sterile distilled water, and then cultured on potato dextrose agar (PDA) medium at 23 ± 1°C under alternating daylight and darkness (12-h light and 12-h dark). Fungal colonies produced a pale olive green, lightly floccose mycelium, generating clusters of dark olive green swollen cells. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 504-bp segment showed 100% homology with a sequence of Phoma aquilegiicola (GenBank Accession No. GU237735). The nucleotide sequence of our isolate was assigned GenBank Accession No. HM222537. Pathogenicity tests were performed by spraying a mycelium suspension of a homogenate of mycelium (1 × 105 mycelial fragments per ml) obtained from 15-day-old PDA cultures of the fungus on leaves of six healthy 6-month-old potted A. flabellata plants. Six plants inoculated with a homogenate of PDA served as controls. Plants were maintained in a greenhouse in a high humidity chamber for 7 days after inoculation at 23 ± 1°C and under high relative humidity conditions (70 to 90%). The first foliar lesions developed on leaves 4 days after inoculation. After 15 days, 80% of the leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of P. aquilegiicola on A. flabellata in Italy. Ascochyta aquilegiae (synonym P. aquilegiicola) has been reported on A. vulgaris in Germany (4) and Aquilegia spp. in the United States (3). Currently, the economic importance of this disease is limited, but may become a more significant problem if the use of A. flabellata in gardens increases. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) G. H. Boerema et al. Phoma Identification Manual. Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing, Wallingford, UK, 2004. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (4) R. Laubert. Gartenwelt 34:621, 1930.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 618-618 ◽  
Author(s):  
R. Bandyopadhyay ◽  
K. Sharma ◽  
T. J. Onyeka ◽  
A. Aregbesola ◽  
P. Lava Kumar

In November 2009, many farmers in Abia State were alarmed by complete destruction of their taro (Colocasia esculenta (L.) Schott.) crop. Symptoms, suggestive of leaf blight caused by Phytophthora colocasiae Raciborski (2), began as small, brown, water-soaked lesions that rapidly enlarged to form large, dark brown, coalescing lesions, sometimes with orange host exudations. White sporulation was evident on the lesion surface under wet conditions. The pathogen caused rapid defoliation and killed plants. The epidemic was widespread in 2010 during the rainy season (April to November) in all taro-growing areas of Nigeria. Diseased leaves were collected from taro in Iwo Village near Ibadan, cut into 4-cm2 pieces, washed in several changes of sterile water, and incubated in petri dishes lined with wet filter paper at 22°C. Newly produced sporangia were collected from the incubated leaves and plated on a selective medium (1). Sporangia were hyaline, papillate, and measured 25 to 55 × 15 to 30 μm. Zoospores encysted within 30 min after release; cysts were 9.7 to 19.5 μm in diameter. Sporangia and zoospore formation were induced in water and by chilling, respectively (1). Two leaves each of three 1-month-old taro and three Xanthosoma plants (both unknown clones) and six detached leaves of taro were inoculated with a 1 × 105/ml zoospore suspension of isolates PC01 and PC02. Detached leaves were incubated in moist chambers at 22°C. Plants were covered with polyethylene bags for 12 h after inoculation and maintained in a screenhouse. Water-soaked lesions appeared on detached leaves within 24 h postinoculation and the leaves were completely rotted 48 h later. All inoculated attached leaves of taro, but not Xanthosoma, showed typical leaf blight symptoms including abundant sporangial production. Noninoculated control detached leaves and plants were disease free. Sporangia from detached and attached inoculated leaves, when plated on selective medium, produced typical P. colocasiae colonies. The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1 and ITS4 primers (3). Amplicons (786 bp) were sequenced in both directions and submitted to GenBank (Accession Nos. HQ602756, HQ602757, HQ602758, and HQ602759). A BLASTn search revealed 99% similarity to a P. colocasiae strain of the Pacific Region (Accession No. GU111604), but only 94% similarity to a P. colocasiae strain from India (Accession No. GQ202149). The sequence analysis, morphological characteristics, and pathogenicity test confirmed the taro leaf blight pathogen as P. colocasiae. There are previous reports of occurrence of taro blight-like disease attributed to P. colocasiae in Ethiopia, Equatorial Guinea (1), and more recently in Cameroon, but comprehensive details on pathogen or disease are not available. To our knowledge, this is the first confirmed record in Nigeria of P. colocasiae causing taro blight. This disease poses a serious threat to the production and biodiversity of this important food crop. Urgent interventions are necessary to halt this emerging epidemic in West and Central Africa. References: (1) Phytophthora colocasiae, In: CABI-Crop Protection Compendium. CAB International, Wallingford, UK, 2005. (2) P. S. Tsao. Page 219 in: Phytophthora: Its Biology, Taxonomy, Ecology and Pathology. The American Phytopathological Society. St. Paul, MN, 1983. (3) T. J. White et al. Page 315 in: PCR Protocol: A Guide to Methods and Applications. Academic Press, London. 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1361-1361 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Madagascar periwinkle (Catharanthus roseus), a plant belonging to the Apocynaceae family, is used for parks and gardens and sometimes grown in pots. At the end of the summer of 2005, a leaf blight was observed on plants in a public park of Torino. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Although lesions were not seen on the stem, affected plants often died leaving wide empty areas. Mycelia of the pathogen were often seen on and suspended between the leaves. Blight progressed from the leaves to the shoot tip. The diseased tissue was disinfected for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 μg/l streptomycin sulphate. A fungus with the morphological characters of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (4). The isolates of R. solani obtained from affected plants were successfully anastomosed with tester isolate AG 1 (ATCC 58946). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. These results are consistent with other reports on anastomosis reactions (2). Pairing was also made with AG 2, 3, 4, 5, 7, and 11, with no anastomoses observed between the isolates and testers. Sclerotia were subspheroid in shape and had a size of 1 mm, which indicated that this pathogen was in subgroup 1B (4). For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 7 days. Plants of C. roseus were grown in 3-liter containers (2 plants per pot) on a steam disinfested substrate (peat/ pomix/pine bark/clay). Artificial inoculation was carried out on 7-day-old plants by placing numerous fragments of PDA cultures on the leaves of the plants. Plants inoculated with PDA alone served as control treatments. Three replicates were used. Plants were maintained in a glasshouse at 20 to 25°C. The first symptoms, similar to those observed in the public park, developed 5 days after inoculation, and R. solani was consistently reisolated from infected plants. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on periwinkle in Italy. The same disease was reported in India (1) and the United States (3). References: (1) R. Balasubramanian and K. S. Bhama. Indian Phytopathol. 30:556, 1977. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. Pages 37–47 in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (3) A. K. Hagan and J. M. Mullen Plant Dis. 77:1169, 1993. (4) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.


Sign in / Sign up

Export Citation Format

Share Document