scholarly journals Vegetative Compatibility and Seasonal Variation Among Isolates of Sclerotinia homoeocarpa

Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 377-381 ◽  
Author(s):  
J. F. Powell ◽  
J. M. Vargas

Dollar spot of amenity turf, caused by Sclerotinia homoeocarpa, occurs in two seasonal epidemics in the northern United States, one from May to late July and a second from mid-August through October. It is not known whether these seasonal epidemics are the result of multiple species or due to seasonal variation within a single species. Isolates of S. homoeocarpa were collected from dollar spot lesions obtained from golf courses in Michigan, Illinois, and Wisconsin. Vegetative compatibility reactions between isolates identified six vegetative compatibility groups (VCGs) among more than 1,300 isolates collected from the eight locations. Most VCGs were present throughout the season, but one was generally recovered only in the late epidemic. Sequences of the nuclear ribosomal internal transcribed spacer 1 (ITS1) were identical among VCGs, indicating that the VCGs represent a single species. The results of this study suggest that the seasonal dollar spot epidemics observed in the northern United States are caused by a single species.

Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1269-1276 ◽  
Author(s):  
G. Viji ◽  
W. Uddin ◽  
N. R. O'Neill ◽  
S. Mischke ◽  
J. A. Saunders

Sixty-seven isolates of Sclerotinia homoeocarpa, causing dollar spot disease in creeping bentgrass, annual bluegrass, Bermudagrass, and perennial ryegrass turf, collected from 23 golf courses in various geographical regions of the United States and Canada between 1972 and 2001, were characterized by vegetative compatibility, genetic diversity, and pathogenicity. Eleven vegetative compatibility groups (VCGs A to K) were identified among the isolates tested in this study, and five of them (VCGs G to K) were new. VCG B was the most predominant group, typifying 33 isolates (51%) tested. S. homoeocarpa isolates collected from golf courses in Pennsylvania belonged to seven VCGs (A, B, E, F, G, I, and K), whereas three groups were observed in those collected from New York (B, E, and G) and New Jersey (E, H, and I). Two isolates, one each from Pennsylvania and Canada, were incompatible when paired with the tester isolates in all possible combinations, and did not fall into any known VCG. An isolate collected from Canada was compatible with tester isolates from two VCGs (C and D). Genetic analyses using amplified fragment length polymorphism (AFLP) showed the presence of two genetically distinct groups, designated as major group and the minor group. The major group included 36 isolates collected from various golf courses in the United States and Canada. Two isolates collected from bermudagrass in Florida formed a separate cluster, the minor group. Isolates that belonged to the major group were further divided into two subgroups (1 and 2). Subgroup 1 consisted of all the isolates that belonged to VCGs A, E, G, H, and I. Three of the four isolates that belonged to VCG K also were clustered with isolates of subgroup 1. Subgroup 2 consisted of all the isolates from VCG B, and one each from VCGs F and K. Pathogenicity assays on Penncross creeping bentgrass showed significant differences (P = 0.05) in virulence among the isolates. Overall, a relationship between virulence and VCGs was observed, in which certain virulence groups corresponded to specific VCGs; however, such a relationship was not observed between virulence and AFLPs. Close similarity among isolates of S. homoeocarpa collected from different locations in the United States and Canada suggests that isolates of the same genotype could be involved in outbreaks of dollar spot epidemics at multiple locations.


2012 ◽  
Vol 102 (5) ◽  
pp. 506-518 ◽  
Author(s):  
Daniele Liberti ◽  
Jeffrey A. Rollins ◽  
Philip F. Harmon

Morphology, vegetative compatibility groups, and molecular characteristics were compared among 47 isolates of the dollar spot pathogen Sclerotinia homoeocarpa. Isolates were collected from cool- and warm-season turfgrasses in Florida and the northern United States. Mycelial pigment accumulation, substratal stromata formation, and symptom development were used to separate the collection into two distinct morphological types: a common-type (C-type) and a Floridian-type (F-type). Phylogenetic relationships estimated from ITS sequences supported the morphological typing. Identification and characterization of the S. homoeocarpa mating-type locus revealed an idiomorphic organization for both C- and F-types with nearly equal frequencies of each mating types present in both groups. These findings suggest heterothallic control of mating and indicate potential for outcrossing in both groups. Dollar spot disease of turfgrass in Florida is caused by two distinct morphological types of S. homoeocarpa which may be cryptic species. These findings could have implications for disease management.


Crop Science ◽  
2006 ◽  
Vol 46 (3) ◽  
pp. 1237-1244 ◽  
Author(s):  
Nanda Chakraborty ◽  
Taehyun Chang ◽  
Michael D. Casler ◽  
Geunhwa Jung

2008 ◽  
Vol 98 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Y.-K. Jo ◽  
S. W. Chang ◽  
J. Rees ◽  
G. Jung

Nitrate-nonutilizing (nit) mutants were recovered for the first time from 21 isolates of Sclerotinia homoeocarpa collected in the United States. Mutants were selected from shredded mycelium of each isolate when cultured on water agar medium amended with 4% (wt/vol) potassium chlorate. The mutants could be classified into three phenotypes: nit1, nit3, and NitM, based on their growth on minimal medium (Czapek solution agar) supplemented with NaNO2 or hypoxanthine. Complementary heterokaryons were observed in pairings between different phenotypes of nit mutants derived from compatible isolates, but not in self-fusions or pairings between incompatible isolates. The vigor of prototrophic growth varied with isolates and mutant phenotypes. Strong and continuous heterokaryons, as well as weak and spontaneous ones, formed depending on pairings of nit mutants. Stable heterokaryons between compatible isolates, but apoptotic reactions between incompatible isolates, were observed immediately after hyphal fusion under the epifluorescence microscope. The 21 isolates used in this study, which were previously assigned into 11 different vegetative compatibility groups (VCGs) based on the formation of a barrage zone at the contact site of paired isolates on complete medium (potato dextrose agar), were regrouped into five VCGs based on heterokaryon formation between nit mutants on minimal medium.


HortScience ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 496-500
Author(s):  
Yu Huang ◽  
John E. Kaminski ◽  
Peter J. Landschoot

Dollar spot, caused by Sclerotinia homoeocarpa F.T. Bennett, is an important disease of creeping bentgrass (Agrostis stolonifera L.) on golf courses in the northern United States. Canopy moisture in the form of dew plays an important role in the development of dollar spot and routine displacement has been shown to reduce disease severity. The use of plant growth regulators (PGRs) is a common management practice for maintaining creeping bentgrass fairways, but their influence on dollar spot is unclear. The objective of this field study was to elucidate the influence of dew removal at the time of fungicide application on dollar spot control in creeping bentgrass regulated by trinexapac-ethyl (TE). Main factors in the study included three dew removal strategies (non-treated, dew removed–mowed, and dew removed–not mowed) before the application of four fungicide treatments (non-treated, chlorothalonil, propiconazole, and iprodione). All fungicide treatments were applied once to turfgrass previously treated with TE or not treated. The presence or absence of dew at the time of fungicide application generally had no influence on fungicide performance with respect to dollar spot control. Based on the results of this study, dew removal before the application of fungicides targeting dollar spot is unnecessary. Applications of TE before fungicides reduced dollar spot severity in some cases, but reductions in symptom expression were limited and did not result in markedly improved dollar spot control.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1457-1469 ◽  
Author(s):  
Angela M. Iglesias-Garcia ◽  
Maria I. Villarroel-Zeballos ◽  
Chunda Feng ◽  
Lindsey J. du Toit ◽  
James C. Correll

In 2005, Verticillium dahliae was first reported to be pathogenic to spinach seed crops in the Pacific Northwest, with symptoms only developing after initiation of the reproductive stage of plant growth, and to be prevalent on commercial spinach seed lots produced in Denmark, The Netherlands, and the United States. In this study, the genetic diversity, pathogenicity, and virulence were examined for a collection of isolates of Verticillium spp. from spinach as well as other hosts (alfalfa, cotton, lettuce, mint, peppermint, potato, radish, and tomato) from various countries and from different vegetative compatibility groups (VCGs). Of a total of 210 isolates of V. dahliae obtained from spinach seed produced in Denmark, the Netherlands, New Zealand, or the United States, 128 were assigned to VCG 4B (89% of 91 U.S. isolates, 86% of 42 isolates from the Netherlands, 19% of 43 Denmark isolates, and 8% of 13 New Zealand isolates), 65 to VCG 2B (92% of the New Zealand isolates, 79% of the Denmark isolates, 14% of the Netherlands isolates, and 9% of the U.S. isolates), and 3 to VCG 2A (2% of each of the Denmark and U.S. isolates, and 0% of the Netherlands and New Zealand isolates); 14 isolates could not be assigned to a VCG. Although little variation in the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA was observed among isolates within each Verticillium sp., the ITS region readily differentiated isolates of the species V. dahliae, V. tricorpus, and Gibellulopsis nigrescens (formerly V. nigrescens) obtained from spinach seed. Greenhouse pathogenicity assays on spinach, cotton, lettuce, and tomato plants using isolates of V. dahliae (n = 29 to 34 isolates), V. tricorpus (n = 3), G. nigrescens (n = 2), and V. albo-atrum (n = 1) originally obtained from these hosts as well as from alfalfa, mint, peppermint, potato, and radish, revealed a wide range in virulence among the isolates. Isolates of V. tricorpus and G. nigrescens recovered from spinach seed and an isolate of V. albo-atrum from alfalfa were not pathogenic on spinach. In addition, isolates of V. dahliae from mint and peppermint were not pathogenic or only weakly virulent on the hosts evaluated. Although there was a wide range in virulence among the isolates of V. dahliae tested, all of the V. dahliae isolates caused Verticillium wilt symptoms on spinach, lettuce, tomato, and cotton. None of the isolates of V. dahliae showed host specificity. These results indicate that Verticillium and related species associated with spinach seed display substantial variability in virulence and pathogenicity to spinach and other plants but the V. dahliae isolates were restricted to three VCGs.


2000 ◽  
Vol 90 (12) ◽  
pp. 1396-1404 ◽  
Author(s):  
J. C. Correll ◽  
T. L. Harp ◽  
J. C. Guerber ◽  
R. S. Zeigler ◽  
B. Liu ◽  
...  

A total of 540 isolates of Pyricularia grisea from rice in the United States were examined for vegetative compatibility, MGR586 DNA fingerprint diversity, and mating type based on hybridization with the mat1-1 and mat1-2 sexual mating type alleles. The collections contained both archived and contemporary field isolates representative of the known MGR586 lineages and races that occur throughout the United States. Complementary nitrate nonutilizing (nit) or sulfate nonutilizing (sul) mutants were used to assess vegetative compatibility in P. grisea. There was a complete correspondence between vegetative compatibility groups (VCGs), MGR586 lineage, and mating type among 527 contemporary isolates (collected between 1991 and 1997) from Arkansas, Louisiana, Missouri, Mississippi, and Texas; all isolates in MGR586 lineages A, B, C, and D belonged to VCGs US-01, US-02, US-03, and US-04, respectively. In addition, all isolates tested in VCGs US-01 and US-04 had the mat1-1 mating type allele whereas those in VCGs US-02 and US-03 had the mat1-2 allele. The strict association of independent markers during this sample period was consistent with a strictly asexual mode of reproduction. However, examination of archived isolates collected in the 1970s and 1980s and contemporary isolates revealed an incongruent relationship between the independent markers. MGR586 C and E isolates were vegetatively compatible which indicated that multiple robust MGR586 delineated lineages could be nested within certain VCGs. Although isolates in lineages C and E were vegetatively compatible, they were of opposite mating type. Several hypotheses, including recombination, could account for the incongruence between the various markers. Among the eight MGR586 lineages (A through H) that occur in the United States, all isolates in lineages A, D, E, G, and H had the mat1-1 allele, whereas isolates in lineages B, C, and F had the mat1-2 allele. Nit mutants can be recovered relatively easy from P. grisea and should allow large numbers of individuals within a population to be assessed for vegetative compatibility. VCGs may prove to be an effective multilocus marker in P. grisea. Thus, VCGs should be a useful means for characterizing genetic structure in populations of the rice blast fungus worldwide, provide a useful genetic framework to assist in interpreting molecular population data, and may provide insight into potential sexual or asexual recombination events.


Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Alexander I. Putman ◽  
Geunhwa Jung ◽  
John E. Kaminski

Chemical management of dollar spot in turf may lead to the development of Sclerotinia homoeocarpa populations with reduced fungicide sensitivity. The objective of this study was to determine the scope of S. homoeocarpa insensitivity to fungicides commonly used to control dollar spot on golf courses in the northeastern United States. A total of 965 and 387 isolates of S. homoeocarpa from intensively or individually sampled sites, respectively, were evaluated for in vitro sensitivity to iprodione, propiconazole, and thiophanate-methyl. Mean baseline sensitivities to iprodione and propiconazole were 0.2763 and 0.0016 μg a.i. ml–1, respectively, and all baseline isolates were sensitive to thiophanate-methyl at 1,000 μg a.i. ml–1. When compared with the baseline population, 14 and 18 of 20 total populations were less sensitive to iprodione and propiconazole, respectively. Individually sampled isolates obtained from fairways, putting greens, or tees were less sensitive to iprodione and propiconazole when compared with the baseline. For thiophanate-methyl, five populations were sensitive, six were resistant, and the remaining nine populations contained various proportions (2 to 92%) of resistant isolates. Individually sampled isolates obtained from fairways and putting greens were evaluated for associations in sensitivity among the three fungicides. A weak but positive correlation in sensitivity to iprodione and propiconazole was observed for isolates resistant to thiophanate-methyl but correlations for sensitive isolates were not significant. Furthermore, isolates with highly reduced sensitivity to iprodione clustered in a narrow range of propiconazole sensitivity. These data suggest the possible existence of resistance mechanisms common to diverse fungicide classes. Overall, results indicate that insensitivity of S. homoeocarpa to iprodione, propiconazole, and thiophanate-methyl exists in varying degrees on golf courses in the northeastern United States.


Plant Disease ◽  
2001 ◽  
Vol 85 (3) ◽  
pp. 297-302 ◽  
Author(s):  
L. I. Douhan ◽  
D. A. Johnson

The vegetative compatibility of 128 isolates of Verticillium dahliae from spearmint and peppermint in the western and midwestern United States was determined. Nit mutants were used to assign isolates to vegetative compatibility groups (VCGs). All isolates were assigned to VCG 2B except for one assigned to VCG 2A and two assigned to VCG 4A. VCG 2 isolates were found in all commercial mint growing regions, while the two VCG 4A isolates originated from southern Idaho. Pathogenicity assays on mint were performed using isolates from mint and other hosts, and pathogenicity assays were conducted on the potato cultivar Russet Norkotah using mint and potato isolates. Isolates originating from mint were significantly more aggressive on mint than were other host isolates, indicating that mint isolates were host-adapted. VCG 4A isolates from mint and potatoes were significantly more aggressive on potato than VCG 4B potato isolates and VCG 2B mint isolates. We speculate that the low VCG diversity of mint isolates may be due to the introduction of a single aggressive strain into Washington State mint fields via infected rhizomes.


Sign in / Sign up

Export Citation Format

Share Document