First Report of Leaf Spot Caused by Septoria villarsiae on Nymphoides peltata in the United States

2021 ◽  
pp. PHP-12-20-0104-
Author(s):  
Monique De Souza ◽  
Raghuwinder Singh ◽  
Nathan E. Harms ◽  
John McPhedran ◽  
Alicyn N. Smart

Nymphoides peltata, commonly known as yellow floating heart, is a freshwater aquatic plant with floating leaves. It is a highly invasive aquatic weed that has been introduced into several countries, including Ireland, New Zealand, Sweden, and the United States. In September 2019, N. peltata plants exhibiting leaf spots were collected from a private pond near Buxton, York County, Maine. Leaf spots were present on a majority of plants, and pycnidia were observed in the center of the spots. Individual pycnidia were aseptically transferred to 1/4-strength potato dextrose agar. Dark gray to black slow-growing colonies were observed between 7 and 14 days. Based on the morphological characteristics, the fungus was identified as Septoria sp. Translation elongation factor 1-alpha gene was amplified, and a 570-bp sequence resulted in 100 and 99.74% homology with Septoria villarsiae strains CBS565.88 and CBS514.78 isolated from N. peltata in the Netherlands, respectively. Previously, S. villarsiae has been reported on Limnanthemum nymphoides from India and on N. peltata from Korea, Poland, Romania, and the Netherlands. To our knowledge, this is the first report of leaf spot caused by S. villarsiae on N. peltata in the United States.

Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
2010 ◽  
Vol 94 (10) ◽  
pp. 1266-1266 ◽  
Author(s):  
M. T. Mmbaga ◽  
Y. Li ◽  
M.-S. Kim

Garden hydrangea (Hydrangea macrophylla) is a popular flowering shrub that grows well in Tennessee but foliar diseases impact their appearance, health, and market value. Leaves of garden hydrangea showed necrotic lesions with concentric rings of brown and dark brown at the Tennessee State University Research Center in McMinnville. A fungus was recovered from June and July leaf samples with 20% frequency of isolation from approximately 40 leaf pieces that were surface sterilized and plated in potato dextrose agar (PDA). Isolates developed white colonies and dark gray-to-black, spore-bearing mycelial cushions (sporodochia) that formed on older colonies (30 to 45 days old) at 25 ± 2°C. Conidia were hyaline to slightly dark, one-celled, ovoid to elongate with rounded ends, and 2.0 to 2.5 × 5.5 to 6.5 μm. These morphological characteristics were consistent with those described for Myrothecium roridum Tode ex Fr. (1). DNA sequence for three isolates of this fungus showed identical internal transcribed spacer (ITS) region sequences (GenBank Accession No. HM215150) with 99% maximum sequence identity to M. roridum isolates (GenBank Accession Nos. AJ301994.1 and AJ608978). Another close match (97%) was with M. gramineum (GenBank Accession No. FJ235084) and M. tongaense (GenBank Accession No. AY254157). Pathogenicity of M. roridum was evaluated on detached leaves from three hydrangea cultivars, Nikko Blue, All Summer Beauty, and Blue bird. Four, medium-size, detached leaves were placed in moist chambers and inoculated with 5-mm mycelial plugs from 14-day-old cultures; sterile PDA was used as the control treatment. A randomized, complete-block experimental design was used with a replication of four leaves per cultivar. Incubation temperature was 26 ± 2°C. Necrotic lesions started 4 to 5 days after inoculation in all inoculated leaves; lesions expanded to cover 10 to 25% of the leaf surface and formed concentric rings; sterile PDA plugs did not produce leaf lesions. This experiment was repeated twice and similar symptoms were produced; M. roridum was reisolated from all inoculated leaves. Spray inoculation of detached leaves of hydrangea cv. Pretty Maiden with 5 × 104 spores/ml produced similar symptoms; leaves sprayed with water remained symptom free. M. roridum has a wide host range and similar symptoms have been reported on other ornamentals including salvia (2), begonia ( http://mrec.ifas.ufl.edu/foliage/folnotes/begonias.htm ), gardenia ( http://cfextension.ifas.ufl.edu/agriculture/ nursery_production/ documents/Gardenia.pdf ), and cotton (3). To our knowledge, this is the first report of M. roridum causing leaf spot on H. macrophylla in the United States. References: (1) M. B. Ellis. Page 465 in: More Damatacous Hyphomycetes. CABI, Wallingford, UK. 1993. (2) J. A. Mangandi et al. Plant Dis. 91:772, 2007. (3) R. L. Munjal. Indian Phytopathol. New Delhi, 13:150, 1960.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 108-108 ◽  
Author(s):  
A. J. Caesar ◽  
R. T. Lartey ◽  
D. K. Berner ◽  
T. Souissi

The herbaceous perennial Lepidium draba L. is an invasive weed of rangelands and riparian areas in North America and Australia. As of 2002, it had infested 40,500 ha of rangeland in Oregon and large areas in Wyoming and Utah. Little is known of plant pathogens occurring on L. draba, especially in the United States, that could be useful for biological control of the weed. Leaf spots were first noted on a stand of L. draba near Shepherd, MT in 1997. The spots were mostly circular but sometimes irregularly shaped and whitish to pale yellow. The pathogen was erroneously assumed to be Cercospora beticola since its morphological traits closely resembled that species and the area had large fields of sugar beet with heavy Cercospora leaf spot incidence. Diseased leaves of L. draba were collected in 1997 and 2007. Conidia, borne singly on dark gray, unbranched conidiophores produced on dark stromata late in the season, were elongate, hyaline, multiseptate, 38 to 120 × 2 to 6 μm (mostly 38 to 50 × 2 to 5 μm) and had bluntly rounded tips and wider, truncate bases. These characteristics were consistent with the description of C. bizzozeriana Saccardo & Berlese (2). To isolate the fungus, spores were picked from fascicles of conidiophores with a fine-tipped glass rod, suspended in sterile water, and spread on plates of water agar. Germinated spores were transferred to potato dextrose agar (PDA). The ITS1, 5.8S, and ITS2 sequences of this fungus (GenBank Accession No. EU887131) were identical to sequences of an isolate of C. bizzozeriana from Tunisia (GenBank Accession No. DQ370428). However, these sequences were also identical to those of a number of Cercospora spp. in GenBank, including C. beticola. We also compared the actin gene sequences of the Montana isolate of C. bizzozeriana (GenBank Accession No. FJ205397) and an isolate of C. beticola from Montana (GenBank Accession No. AF443281); the sequences were 94.6% similar, an appreciable difference. For pathogenicity tests, cultures were grown on carrot leaf decoction agar. Aqueous suspensions of 104 spores per ml from cultures were sprayed on 6-week-old L. draba plants. Plants were covered with plastic bags and placed on the greenhouse bench at 20 to 25°C for 96 h. Koch's postulates were completed by reisolating the fungus from the circular leaf spots that appeared within 10 days, usually on lower leaves. Spores of C. bizzozeriana were also sprayed on seedlings of sugar beet, collard, mustard, radish, cabbage, and kale under conditions identical to those above. No symptoms occurred. After the discovery of the disease in 1997, plants of L. draba in eastern Montana, Wyoming, and Utah were surveyed from 1998 to 2003 for similar symptoms and signs, but none were found. This, to our knowledge, is the first report of C. bizzozeriana in the United States. The initial report of the fungus in North America was from Manitoba in 1938 (1). It has recently been reported as occurring on L. draba in Tunisia (4) and Russia (3) and is reported as common in Europe (2). A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI No. 878750A). References: (1) G. R. Bisby. The Fungi of Manitoba and Saskatchewan. Natl. Res. Council of Canada, Ottawa, 1938. (2) C. Chupp. A Monograph of the Fungus Genus Cercospora. C. Chupp, Ithaca, NY, 1953. (3) Z. Mukhina et al. Plant Dis. 92:316, 2008. (4) T. Souissi et al. Plant Dis. 89:206, 2005.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 425-425 ◽  
Author(s):  
M. Zhang ◽  
T. Tsukiboshi ◽  
I. Okabe

European columbine, Aquilegia vulgaris L., Ranunculaceae, is an herbaceous flower widely used in gardens, parterres, and courtyards and is a traditional herbal plant. During the summer of 2008, leaf spots were observed on a plant cultivated along a roadside area in Nasushiobara, Tochigi, Japan. In some courtyards, the leaf spot affected more than 60% of the plants. Early symptoms appeared as small, round or elliptic, brown lesions on the leaves. Lesions expanded to 5 to 15 × 4 to 10 mm, irregular spots that were dark brown to black in the middle, with pale yellow-brown or purple-brown margins. In continuously wet or humid conditions, thick, gray mycelium and conidia appeared on the surface of leaf spots. Conidiophores were melanized at the base and hyaline near the apex, branched, and septated (approximately 3 mm × 16 to 18 μm). Conidia were hyaline, aseptate, ellipsoidal to obovoid, with a slightly protuberant hilum, and ranged from 9 to 14.5 × 5.5 to 6.5 μm. The pathogen was identified as Botrytis cinerea Pers.:Fr on the basis of morphology and sequence of ITS1-5.8s-ITS2 region of rDNA. The sequence (GenBank Accession No. FJ424510) exactly matched the sequences of two Botryotinia fuckeliana (anamorph Botrytis cinerea), (e.g., GenBank Accession Nos. AY686865 and FJ169666) (2). The fungus was isolated on potato dextrose agar (PDA) from a single conidium found on the symptomatic leaf tissue. Colonies of B. cinerea were first hyaline and later turned gray to black when the spores differentiated. Koch's postulates were performed with three whole plants of potted aquilegia. Leaves were inoculated with mycelia plugs harvested from the periphery of a 7-day-old colony; an equal number of plants were inoculated with the plugs of PDA medium only and served as controls. All plants were covered with plastic bags for 24 h to maintain high relative humidity and incubated at 25°C. After 8 days, all mycelium-inoculated plants showed symptoms identical to those observed on leaves from A. vulgaris infected in the field, whereas controls remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was B. cinerea. B. cinerea has been previously reported on A. vulgaris in the United States and China (1,3). To our knowledge, this is the first report of leaf spots caused by B. cinerea on A. vulgaris in Japan. References: (1) Anonymous. Index of Plant Diseases in the United States. USDA Agric. Handb. No 165, 1960. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) Z. Y. Zhang. Flora Fungorum Sinicorum. Vol. 26. Botrytis, Ramularia. Science Press, Beijing, 2006.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 343-343 ◽  
Author(s):  
Youngjun Kim ◽  
Hyang Burm Lee ◽  
Seung Hun Yu

Japanese plum (Prunus salicina Lindley) is a deciduous tree in the family Rosaceae. In Korea, this plant is widely distributed in orchards as an important stone fruit as well as in gardens as an ornamental tree because of their abundant white blossoms. Every September to November since 2001, leaf spots were observed on Japanese plum in a garden in Cheongyang, Chungnam District, Korea. Early symptoms consisted of small, brown spots that were 2 to 5 mm in diameter. Later, the leaf lesions became circular or irregular, dark brown, expanded to 15 mm in diameter, and resulted in discoloration with necrosis on twisted leaves that was followed by defoliation. In November, older lesions sometimes appeared blackish brown as sporulation occurred on the lesions. The causal fungus was isolated from diseased leaves and cultured on potato dextrose agar. A culture has been placed in the CABI Herbarium (IMI Accession No. 387139). Conidial dimension averaged 34 × 12 μm. On the basis of morphological characteristics of conidia and conidiophores, the causal fungus was identified as a small-spored species of Alternaria as described by E. G. Simmons (1). Pathogenicity tests were conducted by inoculating slightly wounded and nonwounded leaves with a conidial suspension adjusted to 1 × 106 conidia/ml. Four leaves per each experiment were either wounded or not and inoculated with a spore suspension. The eight leaves were placed in a moist chamber at 25°C. After 6 to 10 days, small brown spots appeared on 87% of the wounded and nonwounded leaves. Control leaves sprayed with distilled water did not develop any symptoms. The causal fungus was consistently reisolated from the leaf spots. Results from pathogenicity tests were similar in a repeated test. It is possible that small-spored Alternaria spp. isolates are host specific (2). Eight Alternaria spp., including A. alternata, A. tenuis, A. tenuissima, and A. citri, have been found to cause black spot on fifteen Prunus spp. in China, Japan, Hong Kong, Libya, Mexico, Australia, and the United States (2). Further studies on the host-specific toxin production, geographical distribution, and host ranges for the species of Alternaria isolated from Japanese plum are in progress. To our knowledge, this is the first report of leaf spot on Japanese plum (P. salicina) caused by a small-spored Alternaria sp. in Korea. References: (1) E. G. Simmons. Mycotaxon 55:79, 1995. (2) K. Inoue and H. Nasu. J. Gen. Plant Pathol. 66:18, 2002.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 993-993
Author(s):  
S. T. Seo ◽  
C. H. Shin ◽  
J. H. Park ◽  
H. D. Shin

Melia azedarach L., called chinaberry, is native to Southeast Asia and Australia. The trees are commonly planted as ornamentals in the southern part of Korea. In October 2010, a leaf spot disease was observed on trees for the first time in Wando, Korea. Further surveys conducted from 2010 to 2012 showed that the disease occurs on trees in Jeju, Seogwipo, and Tongyeong cities as well as Wando county with nearly 100% incidence. Leaf spots were circular to semicircular, later becoming angular, small, pale brown in the center with a dark brown margin, and later becoming milky white. Leaf spots sometimes coalesced to blight the entire leaf and were capable of rapidly defoliating whole trees in late September. Fruiting was amphigenous, but mostly hypogenous. Stromata were substomatal, globular, dark brown, and 25 to 70 μm in diameter. Conidiophores were densely fasciculate, pale olivaceous to pale brown, substraight to mildly curved, not geniculate, 10 to 30 μm long, 2.5 to 4.5 μm wide, and aseptate or uniseptate. Conidia were pale olivaceous, generally darker than conidiophores, cylindric to obclavate, substraight in shorter ones, curved to mildly sinuous in longer ones, obconically truncate at the base, obtuse at the apex, 2- to 14-septate, 16 to 120 × 3 to 5 μm, guttulate, and had inconspicuous hila. Morphological characteristics of the fungus were consistent with the previous descriptions of Pseudocercospora subsessilis (Syd. & P. Syd.) Deighton (2). Voucher specimens (n = 6) were deposited in the Korea University Herbarium (KUS). An isolate from KUS-F25395 was deposited in the Korean Agricultural Culture Collection (KACC45688). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 (3) and sequenced. The resulting sequence of 517 bp was deposited in GenBank (Accession No. JX993904). A BLAST search in GenBank revealed that the sequence shows >99% similarity (1 bp substitution) with a sequence of P. subsessilis ex M. azedarach from Cuba (GU269815). For pathogenicity tests, hyphal suspensions were prepared by grinding 3-week-old colonies grown on potato dextrose agar with distilled water using a mortar and pestle. Five 3-year-old chinaberry trees were inoculated with hyphal suspensions using a fine haired paint brush. Three healthy trees of the same age, serving as controls, were sprayed with sterile water. The plants were covered with plastic bags to maintain 100% relative humidity for 24 h and then transferred to a greenhouse. Typical symptoms of necrotic spots that appeared on the inoculated leaves 10 days after inoculation were identical to the ones observed in the field. P. subsessilis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. The disease has been reported in several Asian countries as well as in Cuba and the United States (1). To our knowledge, this is the first report of leaf spot on chinaberry caused by P. subsessilis in Korea. The observed high incidence and severity suggest that this disease can be a limiting factor in utilizing this tree species as ornamentals in public areas. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved October 22, 2012. (2) Y. L. Guo and W. H. Hsieh. The genus Pseudocercospora in China. International Academic Publishers, Beijing, China, 1995. (3) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 846-846 ◽  
Author(s):  
A. J. Caesar ◽  
R. T. Lartey

The exotic, rangeland weed Lepidium draba L., a brassicaceous perennial, is widely distributed in the United States. For example, Oregon contains 100,000 ha of land infested with L. draba (2). Because it is capable of aggressive spread and has the potential to reduce the value of wheat-growing land (4), it is the target of biological control research. The application of multiple pathogens has been advocated for control of other brassicaceous weeds, including the simultaneous application of biotrophic and necrotrophic pathogens (3). In pursuit of this approach, in 2007, we discovered the occurrence of leaf spots on approximately 90% of L. draba plants near Shepherd, MT, which were distinct from leaf lesions caused by Cercospora bizzozeriana (1). The lesions were initially tiny, black spots enlarging over time to become circular to irregular and cream-colored around the initial black spots and sometimes with dark brown borders or chlorotic halos. Conidia from the lesions were light brown, elongate and obclavate, produced singly from short conidia, with 8 to 12 transverse septa, and 2 to 6 longitudinal septa. The spore body measured 25 to 35 × 200 to 250 μm with a beak cell 42 to 100 μm long. On the basis of conidial and cultural characteristics, the fungus was identified as Alternaria brassicae (Berk.) Sacc. Leaf tissues bordering lesions were plated on acidified potato dextrose agar. Colonies on V8 and alfalfa seed agar were black with concentric rings, eventually appearing uniformly black after 10 to 14 days. The internal transcribed spacer region of rDNA was amplified using primers ITS1 and ITS4 and sequenced. BLAST analysis of the 575-bp fragment showed a 100% homology with a sequence of A. brassicae Strain B from mustard (GenBank Accession No. DQ156344). The nucleotide sequence has been assigned GenBank Accession No. FJ869872. For pathogenicity tests, aqueous spore suspensions approximately 105/ml were prepared from cultures grown at 20 to 25°C for 10 to 14 days on V8 agar and sprayed on leaves of three L. draba plants. Inoculated plants were enclosed in plastic bags and incubated at 20 to 22°C for 72 to 80 h. In addition, three plants of the following reported hosts of A. brassicae were inoculated: broccoli, canola, Chinese cabbage, collards, broccoli raab, kale, mustard greens, radish, rape kale, and turnip. Within 10 days, leaf spots similar to those described above developed on plants of radish, canola, Chinese cabbage, and turnip and A. brassicae was reisolated and identified. Control plants sprayed with distilled water remained symptomless. These inoculations were repeated and results were the same. To our knowledge, this is the first report of a leaf spot disease caused by A. brassicae on L. draba in North America. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI No. 878750A). References: (1) A. J. Caesar et al. Plant Dis. 93:108, 2009. (2) G. L. Kiemnec and M. L. McInnis. Weed Technol. 16:231, 2002. (3) A. Maxwell and J. K. Scott. Adv. Bot. Res. 43:143, 2005. (4) G. A. Mulligan and J. N. Findlay. Can. J. Plant Sci. 54:149, 1974.


Sign in / Sign up

Export Citation Format

Share Document