scholarly journals Indole-3-Acetic Acid Improves Postharvest Biological Control of Blue Mold Rot of Apple by Cryptococcus laurentii

2009 ◽  
Vol 99 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Ting Yu ◽  
Jishuang Chen ◽  
Huangping Lu ◽  
Xiaodong Zheng

Cryptococcus laurentii is a well-known postharvest biocontrol yeast; however, it cannot provide satisfactory levels of decay control when used alone. Here, we evaluated the effects of indole-3-acetic acid (IAA), a plant growth regulator, on the biocontrol efficacy of the yeast antagonist C. laurentii against blue mold rot caused by Penicillium expansum in apple fruit. Results showed that the addition of IAA at 20 μg/ml to suspensions of C. laurentii greatly enhanced inhibition of mold rot in apple wounds compared with that observed with C. laurentii alone. The addition of IAA at 20 μg/ml or lower did not influence the population growth of C. laurentii in wounds, but adverse effects were seen on C. laurentii when the concentration of IAA was increased to 200 μg/ml or above in vitro and in vivo. P. expansum infection in apple wounds was not inhibited when the pathogen was inoculated into the fruit wounds within 2 h after application of IAA; however, infection was reduced when inoculated more than 12 h after IAA application. Treatment of wounds with IAA at 20 μg/ml 24 h before pathogen inoculation resulted in significant inhibition of P. expansum spore germination and host infection. Application of IAA at 20 μg/ml also reduced P. expansum infection when it was applied 48 h before pathogen inoculation in the intact fruit. Thus, IAA could reinforce the biocontrol efficacy of C. laurentii in inhibiting blue mold of apple fruit by induction of the natural resistance of the fruit.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanghui Jin ◽  
Bingkai Hou ◽  
Guizhi Zhang

AbstractLeaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.


2008 ◽  
Vol 46 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Ting Yu ◽  
Hongyin Zhang ◽  
Xiaoling Li ◽  
Xiaodong Zheng

Fermentation ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Giacomo Zara ◽  
Maria Grazia Farbo ◽  
Chiara Multineddu ◽  
Quirico Migheli ◽  
Marilena Budroni ◽  
...  

Red yeasts grow on food wastes, show antagonistic activity against food-spoilage microorganisms, produce food supplements, and may be utilized as feed-supplements themselves to positively modulate the quali-quantitative composition of intestinal microbiota. Therefore, they show a variety of possible biotechnological applications in agri-food-related processes. Here, to further explore the biotechnological potential of red yeasts, eleven strains ascribed to different species of the genera Rhodotorula and Sporobolomyces, differing for biomass and carotenoids production, were characterized in vitro for biofilm formation, invasive growth, and growth at the temperature range of 20–40 °C and in vivo for their antagonistic activity against the fungal pathogen and patulin producer Penicillium expansum. Most of them formed cellular MAT and showed invasive growth as well as adhesion to plastic materials. Four strains determined a significant reduction of fruit decay caused by P. expansum on apple fruit while the remaining seven showed different degrees of biocontrol activity. Finally, none of them grew at body temperature (>37 °C). Statistical analyses of both qualitative and quantitative phenotypic data, including biomass and carotenoids production, gathered further information on the most interesting strains for the biotechnological exploitation of red yeasts in agri-food-related process.


2005 ◽  
Vol 95 (11) ◽  
pp. 1271-1278 ◽  
Author(s):  
Raffaello Castoria ◽  
Valeria Morena ◽  
Leonardo Caputo ◽  
Gianfranco Panfili ◽  
Filippo De Curtis ◽  
...  

Contamination of apples (Malus domestica) and derived juices with fungicide residues and patulin produced by Penicillium expansum are major issues of food safety. Biocontrol agents represent an alternative or supplement to chemicals for disease control. Our data show that these microbes could also contribute to actively decreasing patulin accumulation in apples. Three biocontrol agents, Rhodotorula glutinis LS11, Cryptococcus laurentii LS28, and Aureobasidium pullulans LS30, were examined for their in vitro growth in the presence of patulin and for their capability to decrease mycotoxin recovery from the medium. Strain LS11 yielded the highest growth rates and the greatest decrease of toxin recoveries. Further, it caused the appearance of two major spots on thin-layer chromatography (TLC) plates, suggesting possible metabolization of the mycotoxin. In vivo, i.e., in the low percentage of LS11-pretreated apples infected by P. expansum, patulin accumulation was significantly lower than in nontreated infected fruits. Yeast cells survived and increased in infected apples and, in a model system emulating decaying apple, resulted in accelerated breakdown of patulin and the production of the same TLC spots as those detected in vitro. These data suggest that biocontrol yeast cells surviving in decaying apples could metabolize patulin and/or negatively affect its accumulation or synthesis. To our knowledge, this is the first report describing the effect of a biocontrol agent on patulin accumulation in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lina Zhao ◽  
Yiwen Sun ◽  
Dongbiao Yang ◽  
Jun Li ◽  
Xiangyu Gu ◽  
...  

The efficacy of Sporidiobolus pararoseus Y16 in controlling postharvest blue mold caused by Penicillium expansum on apples and the defense response involved were evaluated. The results suggested that the decay incidence of blue mold of apples treated by S. pararoseus Y16 was significantly reduced compared with the control. In vitro testing indicated that germination of spores and germ tube length of P. expansum were markedly inhibited by S. pararoseus Y16. Meanwhile, polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and catalase (CAT) activities and several pathogenesis-related (PR) gene expression levels (including PR3, PR4, PR5, and PR9) were determined. In apples, the activities of PPO, POD, CAT, and PAL were significantly induced by S. pararoseus Y16 treatment compared with the control fruits. The relative expression levels of PR3 and PR4 were significantly induced at 4 and 6 d, while PR5 was significantly induced at 4 and 6 d and PR9 was significantly induced at 4 d. Therefore, the reduction in apple fruit decay by S. pararoseus Y16 treatment could be related to the increased activities of related enzymes and proteins involved in the defense against pathogens, which suggest that S. pararoseus Y16 is a potential antagonistic yeast.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009414
Author(s):  
Raffaele Nicastro ◽  
Serena Raucci ◽  
Agnès H. Michel ◽  
Michael Stumpe ◽  
Guillermo Miguel Garcia Osuna ◽  
...  

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


1979 ◽  
Vol 57 (17) ◽  
pp. 1765-1768
Author(s):  
Hans J. Grambow ◽  
Marie Th. Tücks

3,3′-Bisindolylmethane (BIM), and to a minor degree, 3-methyleneoxindole (MeOx) stimulated mycelial growth in axenic culture of the rust fungus Puccinia graminis f. sp. tritici, race 32, and transition from germ tube to mycelial growth. The effect of BIM was clearly antagonized by indole-3-acetic acid (IAA) and by indole-3-aldehyde (IAld). On the contrary, indole-3-carboxylic acid (ICarb) had a very low antagonistic activity. These results led us to the hypothesis that the balance of the steady-state concentrations of IAA and the various IAA metabolites may be critically involved in the control of the development of the rust fungus in vivo.


Sign in / Sign up

Export Citation Format

Share Document