auxin distribution
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 47)

H-INDEX

28
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Lin Tao ◽  
Yingming Feng ◽  
Yalin Li ◽  
Xuewen Li ◽  
Xiaodong Meng ◽  
...  

AbstractThis study tested a hypothesis that boron (B) supply alleviates aluminum (Al) toxicity by modifying auxin distribution in functionally different root zones. Auxin distribution and transport at various Al and B ratios were analyzed using the range of molecular and imaging techniques. Al stress resulted in increased auxin accumulation in root apical meristem (MZ) and transition zones (TZ) while reducing its content in elongation zone (EZ). This phenomenon was explained by reduction in basipetal auxin transport caused by Al blockage of PIN2 endocytosis, regulated at posttranscriptional level. This inhibition of PIN2 endocytosis was dependent on actin filaments and microtubules. B supply facilitated the endocytosis and exocytosis of PIN2 carriers via recycling endosomes conjugated with IAA to modify Al-induced auxin depletion in the EZ. However, disruption of auxin signaling with auxinole did not alleviate Al-induced inhibition of root growth. B supply alleviates Al-induced inhibition of root growth via restoring the endocytic recycling of PIN2 proteins involved in the basipetal (shootward) auxin transport, restoring Al-induced auxin depletion in the elongation zone.Short summaryAluminum-intensified PIN2 abundance, nontranscriptional, via repressing PIN2 endocytosis to block polar auxin transport, and this adverse effect could be alleviated by boron supply.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kacper Dziewit ◽  
Aleš Pěnčík ◽  
Katarzyna Dobrzyńska ◽  
Ondřej Novák ◽  
Bożena Szal ◽  
...  

Abstract Background The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. Results Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. Conclusions NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.


2021 ◽  
Vol 22 (23) ◽  
pp. 12630
Author(s):  
Luis Morales-Quintana ◽  
Patricio Ramos

Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marco Marconi ◽  
Marcal Gallemi ◽  
Eva Benkova ◽  
Krzysztof Wabnik

Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1600
Author(s):  
Ana Luiza Santos Wagner ◽  
Fabrizio Araniti ◽  
Leonardo Bruno ◽  
Emy Luiza Ishii-Iwamoto ◽  
Maria Rosa Abenavoli

To date, synthetic herbicides are the main tools used for weed control, with consequent damage to both the environment and human health. In this respect, searching for new natural molecules and understanding their mode of action could represent an alternative strategy or support to traditional management methods for sustainable agriculture. Protodioscin is a natural molecule belonging to the class of steroid saponins, mainly produced by monocotyledons. In the present paper, protodioscin’s phytotoxic potential was assessed to identify its target and the potential mode of action in the model plant Arabidopsis thaliana. The results highlighted that the root system was the main target of protodioscin, which caused a high inhibitory effect on the primary root length (ED50 50 μM) with morphological alteration, accompanied by a significant increase in the lateral root number and root hair density. Through a pharmacological and microscopic approach, it was underlined that this saponin modified both auxin distribution and transport, causing an auxin accumulation in the region of root maturation and an alteration of proteins responsible for the auxin efflux (PIN2). In conclusion, the saponin protodioscin can modulate the root system of A. thaliana by interfering with the auxin transport (PAT).


2021 ◽  
Vol 22 (15) ◽  
pp. 7993
Author(s):  
Ana Smolko ◽  
Nataša Bauer ◽  
Iva Pavlović ◽  
Aleš Pěnčík ◽  
Ondřej Novák ◽  
...  

Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Monica Carabelli ◽  
Luana Turchi ◽  
Giorgio Morelli ◽  
Lars Østergaard ◽  
Ida Ruberti ◽  
...  

AbstractSymmetry establishment is a critical process in the development of multicellular organs and requires careful coordination of polarity axes while cells actively divide within tissues. Formation of the apical style in the Arabidopsis gynoecium involves a bilateral-to-radial symmetry transition, a stepwise process underpinned by the dynamic distribution of the plant morphogen auxin. Here we show that SPATULA (SPT) and the HECATE (HEC) bHLH proteins mediate the final step in the style radialisation process and synergistically control the expression of adaxial-identity genes, HOMEOBOX ARABIDOPSIS THALIANA 3 (HAT3) and ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4). HAT3/ATHB4 module drives radialisation of the apical style by promoting basal-to-apical auxin flow and via a negative feedback mechanism that finetune auxin distribution through repression of SPT expression and cytokinin sensitivity. Thus, this work reveals the molecular basis of axes-coordination and hormonal cross-talk during the sequential steps of symmetry transition in the Arabidopsis style.


2021 ◽  
Author(s):  
Ting Ting Xiao ◽  
Gwendolyn Kristin Kirschner ◽  
Boubacar A. Kountche ◽  
Muhammad Jamil ◽  
Savina Maria ◽  
...  

The parasitic plant Striga hermonthica invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium is derived directly from the differentiation of the Striga radicle. Currently, how Striga root cell lineages are patterned and the molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental-morphodynamic programs that regulate terminal haustorium formation in S. hermonthica at spatiotemporal and cellular resolutions. We showed that in S. hermonthica roots, meristematic cells first undergo multiplanar divisions, which decrease during growth and correlate with reduced expression of the stem cell regulator PLETHORA1. We also found that PIN-FORMED (PIN) proteins undergo a shift in polarity. Using the layout of the root structure and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots from the vegetative to the invasive state by inducing meristem differentiation through auxin excretion to the environment and explain how asymmetric PIN polarity controls auxin distribution to maintain meristem activity and sustain root growth.


2021 ◽  
Vol 22 (11) ◽  
pp. 5979
Author(s):  
Ágnes Cséplő ◽  
Laura Zsigmond ◽  
Norbert Andrási ◽  
Abu Imran Baba ◽  
Nitin M. Labhane ◽  
...  

The Arabidopsis AtCRK5 protein kinase is involved in the establishment of the proper auxin gradient in many developmental processes. Among others, the Atcrk5-1 mutant was reported to exhibit a delayed gravitropic response via compromised PIN2-mediated auxin transport at the root tip. Here, we report that this phenotype correlates with lower superoxide anion (O2•−) and hydrogen peroxide (H2O2) levels but a higher nitric oxide (NO) content in the mutant root tips in comparison to the wild type (AtCol-0). The oxidative stress inducer paraquat (PQ) triggering formation of O2•− (and consequently, H2O2) was able to rescue the gravitropic response of Atcrk5-1 roots. The direct application of H2O2 had the same effect. Under gravistimulation, correct auxin distribution was restored (at least partially) by PQ or H2O2 treatment in the mutant root tips. In agreement, the redistribution of the PIN2 auxin efflux carrier was similar in the gravistimulated PQ-treated mutant and untreated wild type roots. It was also found that PQ-treatment decreased the endogenous NO level at the root tip to normal levels. Furthermore, the mutant phenotype could be reverted by direct manipulation of the endogenous NO level using an NO scavenger (cPTIO). The potential involvement of AtCRK5 protein kinase in the control of auxin-ROS-NO-PIN2-auxin regulatory loop is discussed.


Author(s):  
Caiwen Xue ◽  
Wenfeng Li ◽  
Ren Fang Shen ◽  
Ping Lan

Phosphate is essential for plant growth and development. Root architecture alternations induced by phosphate starvation (-Pi), including primary root and lateral root growth, are mediated by iron (Fe). However, whether and how Fe participates in the -Pi-induced root hair growth (RHG) remains unclear. Here, with morphological, proteomic, and pharmacological analysis, we investigate the impacts of Fe on RHG under -Pi and the underlying mechanisms. We found that -Pi-induced RHG was affected by the local Fe availability. Reduced sensitivity to Fe was found in aux1-7, arf10arf16, and phr1 under -Pi, indicating auxin and phosphate starvation-induced responses were required for the Fe-triggered RHG under -Pi. Fe availability was then found to affect the auxin distribution and expression of phosphate starvation-responsive (PSR) genes. Proteomic analysis indicated vesicle trafficking was affected by Fe under -Pi. With the application of brefeldin A, we found the vesicle trafficking was affected by Fe, and root hairs displayed reduced sensitivity to Fe, indicating the vesicle trafficking is critical for Fe-triggered RHG under -Pi. Our data suggested that Fe is involved in RHG under -Pi by integrating the vesicle trafficking, auxin distribution, and PSR. It further enriches the understanding of the interplay between phosphate and iron on RHG.


Sign in / Sign up

Export Citation Format

Share Document