scholarly journals Ablation of Indian Hedgehog in the Murine Uterus Results in Decreased Cell Cycle Progression, Aberrant Epidermal Growth Factor Signaling, and Increased Estrogen Signaling1

2010 ◽  
Vol 82 (4) ◽  
pp. 783-790 ◽  
Author(s):  
Heather L. Franco ◽  
Kevin Y. Lee ◽  
Russell R. Broaddus ◽  
Lisa D. White ◽  
Beate Lanske ◽  
...  
Pancreas ◽  
2001 ◽  
Vol 23 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Bertram Poch ◽  
Frank Gansauge ◽  
Andreas Schwarz ◽  
Thomas Seufferlein ◽  
Thomas Schnelldorfer ◽  
...  

Author(s):  
Takashi Hashimoto ◽  
Maki Kobayashi ◽  
Kazuki Kanazawa

Objective: The effects of 6-MSITC on cell cycle progression were investigated in quiescent mouse epidermal JB6 cells. Background: 6-Methylsulfinylhexyl isothiocyanate (6-MSITC) derived from wasabi (Wasabia japonica) has been reported to prevent tumor development in vivo. Material and methods: Treatment with epidermal growth factor (EGF) to quiescent JB6 cells, which were serum-starved for 36 h, promoted cell cycle progression from the G0/G1 phase to the S phase. Effects of pretreatment with 6-MSITC on cell cycle progression were estimated by flowcytometry and real-time RT-PCR. Results: Pretreatment with 6-MSITC at 0.25-1.0 μg/ml prior to the growth stimulation with EGF significantly inhibited cell cycle progression. Pretreatment with 6-MSITC inhibited the gene expression of DNA synthesis-related proteins cyclin A2, dumbbell former 4, and proliferating cell nuclear antigen. Conclusion: These results showed that 6-MSITC inhibits cell cycle progression in quiescent cells, accompanied by the inhibition of gene expression of DNA synthesis proteins.


1991 ◽  
Vol 11 (10) ◽  
pp. 5032-5043
Author(s):  
E A Musgrove ◽  
C S Lee ◽  
R L Sutherland

This study documents a biphasic change in the rate of cell cycle progression and proliferation of T-47D human breast cancer cells treated with synthetic progestins, consisting of an initial transient acceleration in transit through G1, followed by cell cycle arrest and growth inhibition. Both components of the response were mediated via the progesterone receptor. The data are consistent with a model in which the action of progestins is to accelerate cells already progressing through G1, which are then arrested early in G1 after completing a round of replication, as are cells initially in other phases of the cell cycle. Such acceleration implies that progestins act on genes or gene products which are rate limiting for cell cycle progression. Increased production of epidermal growth factor and transforming growth factor alpha, putative autocrine growth factors in breast cancer cells, does not appear to account for the initial response to progestins, since although the mRNA abundance for these growth factors is rapidly induced by progestins, cells treated with epidermal growth factor or transforming growth factor alpha did not enter S phase until 5 to 6 h later than those stimulated by progestin. The proto-oncogenes c-fos and c-myc were rapidly but transiently induced by progestin treatment, paralleling the well-known response of these genes to mitogenic signals in other cell types. The progestin antagonist RU 486 inhibited progestin regulation of both cell cycle progression and c-myc expression, suggesting that this proto-oncogene may participate in growth modulation by progestins.


1991 ◽  
Vol 11 (10) ◽  
pp. 5032-5043 ◽  
Author(s):  
E A Musgrove ◽  
C S Lee ◽  
R L Sutherland

This study documents a biphasic change in the rate of cell cycle progression and proliferation of T-47D human breast cancer cells treated with synthetic progestins, consisting of an initial transient acceleration in transit through G1, followed by cell cycle arrest and growth inhibition. Both components of the response were mediated via the progesterone receptor. The data are consistent with a model in which the action of progestins is to accelerate cells already progressing through G1, which are then arrested early in G1 after completing a round of replication, as are cells initially in other phases of the cell cycle. Such acceleration implies that progestins act on genes or gene products which are rate limiting for cell cycle progression. Increased production of epidermal growth factor and transforming growth factor alpha, putative autocrine growth factors in breast cancer cells, does not appear to account for the initial response to progestins, since although the mRNA abundance for these growth factors is rapidly induced by progestins, cells treated with epidermal growth factor or transforming growth factor alpha did not enter S phase until 5 to 6 h later than those stimulated by progestin. The proto-oncogenes c-fos and c-myc were rapidly but transiently induced by progestin treatment, paralleling the well-known response of these genes to mitogenic signals in other cell types. The progestin antagonist RU 486 inhibited progestin regulation of both cell cycle progression and c-myc expression, suggesting that this proto-oncogene may participate in growth modulation by progestins.


Sign in / Sign up

Export Citation Format

Share Document