scholarly journals Submaximal Level Single Twitch Kinetics Dependent on Disease State in Duchenne Muscular Dystrophy Mouse Model

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Kyra K. Peczkowski ◽  
Neha Rastogi ◽  
Eric J. Schultz ◽  
Jill A. Rafael‐Fortney ◽  
Paul M. L. Janssen
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11220 ◽  
Author(s):  
Alfredo D. Guerron ◽  
Rashmi Rawat ◽  
Arpana Sali ◽  
Christopher F. Spurney ◽  
Emidio Pistilli ◽  
...  

2016 ◽  
Vol 86 ◽  
pp. 109-120 ◽  
Author(s):  
Marco Fuenzalida ◽  
Claudia Espinoza ◽  
Miguel Ángel Pérez ◽  
Cheril Tapia-Rojas ◽  
Loreto Cuitino ◽  
...  

Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 61 ◽  
Author(s):  
Josiane Joseph ◽  
Dong Cho ◽  
Jason Doles

Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and the few therapies that are available do not dramatically delay disease progression. Thus, there is a need to better understand the mechanisms underlying DMD which may ultimately lead to improved treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice. Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally, metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.


Sign in / Sign up

Export Citation Format

Share Document