Standard and High Fat Food Intake is Suppressed by PF5190457, the Ghrelin Growth Hormone Secretagogue 1α Receptor Inverse Agonist/Antagonist

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Victoria Dobbie Brehm ◽  
Noelle C. Anastasio ◽  
Christina R. Merritt ◽  
F. Gerard Moeller ◽  
Kathryn A. Cunningham
2020 ◽  
Vol 119 ◽  
pp. 104718
Author(s):  
María Paula Cornejo ◽  
Franco Barrile ◽  
Daniela Cassano ◽  
Julieta Paola Aguggia ◽  
Guadalupe García Romero ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiyao Zhang ◽  
Wensong Li ◽  
Ping Li ◽  
Manli Chang ◽  
Xu Huang ◽  
...  

As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.


2009 ◽  
Vol 123 (5) ◽  
pp. 1058-1065 ◽  
Author(s):  
Alexander W. Johnson ◽  
Rebecca Canter ◽  
Michela Gallagher ◽  
Peter C. Holland

2005 ◽  
Vol 16 (Supplement 1) ◽  
pp. S22-S23
Author(s):  
Z.D. Thornton-Jones ◽  
S.P. Vickers ◽  
G.A. Kennett ◽  
K.R. Benwell ◽  
D.F. Revell ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xuehan Lu ◽  
Lili Huang ◽  
Zhengxiang Huang ◽  
Dandan Feng ◽  
Richard J. Clark ◽  
...  

Liver-expressed antimicrobial peptide 2 (LEAP-2), originally described as an antimicrobial peptide, has recently been recognized as an endogenous blocker of growth hormone secretagogue receptor 1a (GHS-R1a). GHS-R1a, also known as ghrelin receptor, is a G protein-coupled receptor (GPCR) widely distributed on the hypothalamus and pituitary gland where it exerts its major functions of regulating appetite and growth hormone (GH) secretion. The activity of GHS-R1a is controlled by two counter-regulatory endogenous ligands: Ghrelin (activation) and LEAP-2 (inhibition). Ghrelin activates GHS-R1a on the neuropeptide Y/Agouti-related protein (NPY/AgRP) neurons at the arcuate nucleus (ARC) to promote appetite, and on the pituitary somatotrophs to stimulate GH release. On the flip side, LEAP-2, acts both as an endogenous competitive antagonist of ghrelin and an inverse agonist of constitutive GHS-R1a activity. Such a biological property of LEAP-2 vigorously blocks ghrelin’s effects on food intake and hormonal secretion. In circulation, LEAP-2 displays an inverse pattern as to ghrelin; it increases with food intake and obesity (positive energy balance), whereas decreases upon fasting and weight loss (negative energy balance). Thus, the LEAP-2/ghrelin molar ratio fluctuates in response to energy status and modulation of this ratio conversely influences energy intake. Inhibiting ghrelin’s activity has shown beneficial effects on obesity in preclinical experiments, which sheds light on LEAP-2’s anti-obesity potential. In this review, we will analyze LEAP-2’s effects from a metabolic point of view with a focus on metabolic hormones (e.g., ghrelin, GH, and insulin), and discuss LEAP-2’s potential as a promising therapeutic target for obesity.


2006 ◽  
Vol 290 (3) ◽  
pp. R803-R808 ◽  
Author(s):  
Wei Wei ◽  
Xiang Qi ◽  
Jason Reed ◽  
Jeff Ceci ◽  
Hui-Qun Wang ◽  
...  

The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.


Sign in / Sign up

Export Citation Format

Share Document