obesity in mice
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 166)

H-INDEX

62
(FIVE YEARS 7)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongying Cai ◽  
Zhiguo Wen ◽  
Xin Xu ◽  
Jiaxin Wang ◽  
Xuan Li ◽  
...  

Lactobacillus plantarum is considered a potential probiotic supplementation for treating obesity. However, the underlying molecular mechanism is poorly understood. Our previous study displayed that L. plantarum FRT4 alleviated obesity in mice fed a high-fat diet (HFD) through ameliorating the HFD-induced gut microbiota dysbiosis. To explore the roles of FRT4 in obesity prevention, in this study, we investigated changes in serum metabolomic phenotype by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and analyzed the pathway of HFD-fed Kunming female mice orally administered with FRT4 for eight weeks. Using orthogonal partial least squares discriminant analysis (OPLS-DA), metabolite patterns with significant changes were observed. 55 metabolites including phosphatidylcholine, lysophophatidylcholine, sphingomyelin, serotonin, indole-3-methyl aceta, indole-3-carbinol, indole-5,6-quino, 11,12-DHET, prostaglandin B2, leukotriene B4, and 3-hydroxybenzoic acid were identified as potential biomarkers associated with obesity, which were mainly involving in glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. Perturbations of 14 biomarkers could be regulated by FRT4 intervention. These metabolites may serve as valuable biomarkers to understand the mechanisms by which intake of diets containing FRT4 contributes to the treatment or prevention of obesity. Thus, FRT4 can be a promising dietary supplement for the prevention of HFD-induced obesity.


Author(s):  
Pei-Sheng Lee ◽  
Ying-Ying Lu ◽  
Kalyanam Nagabhushanam ◽  
Chi-Tang Ho ◽  
Hui-Ching Mei ◽  
...  

Folia Medica ◽  
2021 ◽  
Vol 63 (6) ◽  
pp. 895-900
Author(s):  
Eka Roina Megawati ◽  
Lokot Donna Lubis ◽  
Febi Yanti Harahap

Introduction: Obesity creates health problems by increasing the risks of chronic diseases such as type 2 diabetes and cardiovascular disorders. Obesity leads to insulin resistance, higher blood glucose and cholesterol levels. Adipose tissues synthesize adiponectin which acts as anti-inflammatory, antidiabetic, and anti-atherogenic agent. Meanwhile, vitamin E is an antioxidant that acts as an anti-inflammation. Aim: The purpose of this study was to analyze the effects of vitamin E supplementation to metabolic markers on diet-induced obesity in mice. Materials and methods: Twenty-four mice (Mus musculus, L) aged four weeks were divided into six groups which were fed different diets and given vitamin E in different dosages or methods. The period of treatment was 18 weeks. The mice body weights were measured every week; blood sugar and cholesterol levels were measured every six weeks, and the adiponectin level measurement was done at week 18. Results: A repeated measures ANOVA showed that body weight and cholesterol level within groups were not significantly different [F(15, 54)=1.417, 0.173 and F(10, 36)=1.391, 0.224 respectively]. The glucose levels were found to be significantly different [F(7.646, 27.526)=2.625, 0.030]. There was no significant difference in the adiponectin levels. Conclusions: Vitamin E supplementation could not prevent the increase of body weight, the elevation of blood sugar and cholesterol levels, and also could not increase adiponectin level.


2021 ◽  
Author(s):  
Shouhei Hirose ◽  
Krisana Asano ◽  
Seiyu Harada ◽  
Tatsuji Takahashi ◽  
Eriko Kondou ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2015
Author(s):  
Il-Je Cho ◽  
Sung-Eon Kim ◽  
Beom-Rak Choi ◽  
Hye-Rim Park ◽  
Jeong-Eun Park ◽  
...  

Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fatemeh Ashrafian ◽  
Shahrbanoo Keshavarz Azizi Raftar ◽  
Arezou Lari ◽  
Arefeh Shahryari ◽  
Sara Abdollahiyan ◽  
...  

Abstract Background Several studies have shown that probiotics have beneficial effects on weight control and metabolic health. In addition to probiotics, recent studies have investigated the effects of paraprobiotics and postbiotics. Therefore, we evaluated the preventive effects of live and pasteurized Akkermansia muciniphila MucT (A. muciniphila) and its extracellular vesicles (EVs) on HFD-induced obesity. Results The results showed that body weight, metabolic tissues weight, food consumption, and plasma metabolic parameters were increased in the HFD group, whereas A. muciniphila preventive treatments inhibited these HFD. The effects of pasteurized A. muciniphila and its extracellular vesicles were more noticeable than its active form. The HFD led to an increase in the colonic, adipose tissue, and liver inflammations and increased the expression of genes involved in lipid metabolism and homeostasis. Nevertheless, these effects were inhibited in mice that were administered A. muciniphila and its EVs. The assessment of the gut microbiota revealed significant differences in the microbiota composition after feeding with HFD. However, all treatments restored the alterations in some bacterial genera and closely resemble the control group. Also, the correlation analysis indicated that some gut microbiota might be associated with obesity-related indices. Conclusions Pasteurized A. muciniphila and its EVs, as paraprobiotic and postbiotic agents, were found to play a key role in the regulation of metabolic functions to prevent obesity, probably by affecting the gut-adipose-liver axis. Graphical Abstract


2021 ◽  
Author(s):  
Kengo Inada ◽  
Kazuko Tsujimoto ◽  
Masahide Yoshida ◽  
Katsuhiko Nishimori ◽  
Kazunari Miyamichi

Decades of studies have revealed molecular and neural circuit bases for body weight homeostasis. Neural hormone oxytocin (OT) has received attention in this context because it is produced by neurons in the paraventricular hypothalamic nucleus (PVH), a known output center of hypothalamic regulation of appetite. OT has an anorexigenic effect, as shown in human studies, and can mediate satiety signals in rodents. However, the function of OT signaling in the physiological regulation of appetite has remained in question, because whole-body knockout (KO) of OT or OT receptor (OTR) has little effect on food intake. We herein show that acute conditional KO (cKO) of OT selectively in the adult PVH, but not in the supraoptic nucleus, markedly increases body weight and food intake, with an elevated level of plasma triglyceride and leptin. Intraperitoneal administration of OT rescues the hyperphagic phenotype of the PVH OT cKO model. Furthermore, we show that cKO of OTR selectively in the posterior hypothalamic regions, which include the primary centers for appetite regulations, phenocopies hyperphagic obesity. Collectively, these data functionally reveal that OT signaling in the posterior hypothalamic regions suppresses excessive food intake.


Sign in / Sign up

Export Citation Format

Share Document