Adiponectin Reduces Angiotensin II‐Induced Vascular Hypertrophy by Targeting ROS Formation and Actin Cytoskeleton Remodeling

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Asad Zeidan ◽  
Zeina Radwan ◽  
Rima Farht ◽  
Crystal Ghantous
2005 ◽  
Vol 83 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Rhian M Touyz ◽  
Guoying Yao ◽  
Ernesto L Schiffrin

Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10–7 mol/L) in the absence and presence of cytochalasin B (10–6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 µmol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.Key words: superoxide, NADPH oxidase, p38MAP kinase, JNK, ERK1/2.


Circulation ◽  
1997 ◽  
Vol 96 (5) ◽  
pp. 1593-1597 ◽  
Author(s):  
Pierre Moreau ◽  
Livius V. d’Uscio ◽  
Sidney Shaw ◽  
Hiroyuki Takase ◽  
Matthias Barton ◽  
...  

Glia ◽  
2008 ◽  
Vol 56 (16) ◽  
pp. 1755-1766 ◽  
Author(s):  
Grazia Paola Nicchia ◽  
Andrea Rossi ◽  
Maria Grazia Mola ◽  
Giuseppe Procino ◽  
Antonio Frigeri ◽  
...  

2011 ◽  
Vol 39 (02) ◽  
pp. 381-394 ◽  
Author(s):  
Paul Chan ◽  
Ju-Chi Liu ◽  
Li-Jen Lin ◽  
Po-Yuan Chen ◽  
Tzu-Hurng Cheng ◽  
...  

Tanshinone IIA extracted from Danshen, a popular medicinal herb used in traditional Chinese medicine, exhibits cardio-protective effects. However, the mechanism of its cardioprotective effect is not well established. The aims of this study were to examine whether tanshinone IIA may alter angiotensin II (Ang II)-induced cell proliferation and to identify the putative underlying signaling pathways in rat cardiac fibroblasts. Cultured rat cardiac fibroblasts were pre-treated with tanshinone IIA and stimulated with Ang II, cell proliferation and endothelin-1 (ET-1) expression were examined. The effect of tanshinone IIA on Ang II-induced reactive oxygen species (ROS) formation, and extracellular signal-regulated kinase (ERK) phosphorylation were also examined. In addition, the effect of tanshinone IIA on nitric oxide (NO) production, and endothelial nitric oxide synthase (eNOS) phosphorylation were tested to elucidate the intracellular mechanism. The increased cell proliferation and ET-1 expression by Ang II (100 nM) were partially inhibited by tanshinone IIA. Tanshinone IIA also inhibited Ang II-increased ROS formation, and ERK phosphorylation. In addition, tanshinone IIA was found to increase the NO generation, and eNOS phosphorylation. NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, and the short interfering RNA transfection for eNOS markedly attenuated the inhibitory effect of tanshinone IIA on Ang II-induced cell proliferation. The results suggest that tanshinone IIA prevents cardiac fibroblast proliferation by interfering with the generation of ROS and involves the activation of the eNOS-NO pathway.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Winnie W. C. Shum ◽  
Nicolas Da Silva ◽  
Clemence Belleannee ◽  
Marija Ljubojevic ◽  
Eric Hill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document