scholarly journals Interplay of RAN translation and FMRP synthesis in Fragile X‐associated disorders

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Samantha Fernandes ◽  
Shannon Wright ◽  
Peter Todd
Keyword(s):  
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
X P Nguyen ◽  
B Messmer ◽  
J E Dietrich ◽  
K Hinderhofer ◽  
T Strowitzki ◽  
...  

Abstract Study question Does repeat-associated non-AUG (RAN) translation lead to accumulation of polyglycine- containing protein (FMRpolyG) in human lymphocytes and mural granulosa cells of FMR1 premutation carriers? Summary answer Lymphocytes and granulosa cells from FMR1 premutation carriers contain intracellular inclusions that stain positive for both FMRpolyG and ubiquitin. What is known already: Fragile-X-associated-Primary-Ovarian-Insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism associated with the expansion of CGG-repeats in the 5’UTR of FMR1, called premutation (PM) (n: 55–200). Approximately 20% of women carrying a FMR1-premutation (PM) allele develop FXPOI. RAN-translation dependent on variable CGG-repeat length is hypothesized to cause FXPOI due to the production of a polyglycine-containing FMR1-protein, FMRpolyG. Recently, FMRpolyG inclusions were found in neuronal brain cells of FXTAS patients and stromal cells of the ovary of an FXPOI patient. Study design, size, duration: Lymphocytes and granulosa cells (GCs) from women with PM (6) and women without PM (10) (controls) were analyzed by immunofluorescence (IF) staining for the presence of inclusions positive for ubiquitin and FMRpolyG. Cell lysis and protein extraction samples were subjected to Fluorescent Western Blot (WB) analysis to detect FMRP and FMRpolyG Participants/materials, setting, methods Human GCs were obtained from follicular fluid after oocyte retrieval and lymphocytes were isolated from peripheral blood using Ficoll-Paque. Cells suspended in PBS were adhered to a glass-coverslip placed at the bottom of the 6-well culture plate, via gravity sedimentation. Adhered cells were fixed, IF staining for FMRpolyG and ubiquitin was performed and analyzed by fluorescence microscopy. Fluorescent WB was used to demonstrate the expression of FMRP, FMRpolyG in extracted protein from lymphocytes and GCs. Main results and the role of chance FMRP was successfully detected by fluorescence WB in both lymphocytes and GCs. FMRP is mainly present in cytoplasm and was expressed in greater amount in GCs than in leukocytes. Moreover, FMRP expression was significantly decreased in GCs from FMR1-PM compared with controls. Lymphocytes from PM-carriers and controls were immunostained for FMRpolyG and ubiquitin. In PM-carriers, FMRpolyG was present as aggregates, whereas in controls only a weak signal without inclusions was detectable. The expression pattern of FMRpolyG in GCs was similar to that in lymphocytes with a significant increase in PM-carriers. There, the FMRpolyG-aggregates additionally demonstrated as ubiquitin-positive inclusions. These may resemble the toxic potential of these protein fractions involved the ovarian damage in developing FXPOI. Limitations, reasons for caution More patients are needed to support the present findings. Further investigation into the possible consequences of these FMRpolyG-positive inclusions in PM-carriers is also advisable. Wider implications of the findings: We found for the first time FMRpolyG-accumulation in lymphocytes and GCs from FMR1-PM-carriers in ubiquitin-positive inclusions. Future experiments evaluating consistency in more patients and elucidating the impact on fertility and prospective value for individual ovarian reserve are therefore in preparation. Trial registration number Not applicable


2020 ◽  
Author(s):  
Yuan Zhang ◽  
M. Rebecca Glineburg ◽  
Venkatesha Basrur ◽  
Kevin Conlon ◽  
Deborah A. Hall ◽  
...  

AbstractRepeat associated non-AUG (RAN) translation of FMR1 5’ UTR CGG repeats produces toxic homo-polymeric proteins that accumulate within ubiquitinated inclusions in Fragile X-associated tremor/ataxia syndrome (FXTAS) patient brains and model systems. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG codon located just 5’ to the repeat. Methods to accurately measure FMRpolyG in FXTAS patients are lacking. Here we used data dependent acquisition (DDA) and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides (SIS) to identify potential signature FMRpolyG fragments in patient cells and tissues. Following immunoprecipitation (IP) enrichment, we detected FMRpolyG signature peptides by PRM in transfected cells, FXTAS human samples and patient derived stem cells, but not in controls. Surprisingly, we identified two amino-terminal peptides: one beginning with methionine (Ac-MEAPLPGGVR) initiating at an ACG, and a second beginning with threonine (Ac-TEAPLPGGVR), initiating at a GUG. Abundance of the threonine peptide was enhanced relative to the methionine peptide upon activation of the integrated stress response. In addition, loss of the eIF2 alternative factor, eIF2A, or enhanced expression of initiation factor eIF1, preferentially suppressed GUG initiated FMRpolyG synthesis. These data demonstrate that FMRpolyG is quantifiable in human samples and that RAN translation on FMR1 initiates at specific near cognate codons dependent on available initiation factors and cellular environment.


2021 ◽  
Author(s):  
Yuan Zhang ◽  
M. Rebecca Glineburg ◽  
Venkatesha Basrur ◽  
Kevin P. Conlon ◽  
Shannon E. Wright ◽  
...  

2015 ◽  
Vol 24 (15) ◽  
pp. 4317-4326 ◽  
Author(s):  
Seok Yoon Oh ◽  
Fang He ◽  
Amy Krans ◽  
Michelle Frazer ◽  
J. Paul Taylor ◽  
...  

Author(s):  
Amanda N. Sacino ◽  
Stefan Prokop ◽  
Meggen A. Walsh ◽  
Jennifer Adamson ◽  
S. H. Subramony ◽  
...  

Abstract Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer’s disease (AD) and Parkinson’s disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide. In addition, we describe prominent neuronal and glial tau pathology representing changes seen in progressive supranuclear palsy (PSP). The highest abundance of the respective pathological changes was seen in distinct brain regions indicating an incidental, rather than causal correlation.


Neuron ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. 405-408 ◽  
Author(s):  
Kaalak Reddy ◽  
Christopher E. Pearson
Keyword(s):  

2021 ◽  
Vol 7 (3) ◽  
pp. eabd9440
Author(s):  
Sefan Asamitsu ◽  
Yasushi Yabuki ◽  
Susumu Ikenoshita ◽  
Kosuke Kawakubo ◽  
Moe Kawasaki ◽  
...  

Fragile X-related tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease caused by CGG triplet repeat expansions in FMR1, which elicit repeat-associated non-AUG (RAN) translation and produce the toxic protein FMRpolyG. We show that FMRpolyG interacts with pathogenic CGG repeat-derived RNA G-quadruplexes (CGG-G4RNA), propagates cell to cell, and induces neuronal dysfunction. The FMRpolyG polyglycine domain has a prion-like property, preferentially binding to CGG-G4RNA. Treatment with 5-aminolevulinic acid, which is metabolized to protoporphyrin IX, inhibited RAN translation of FMRpolyG and CGG-G4RNA–induced FMRpolyG aggregation, ameliorating aberrant synaptic plasticity and behavior in FXTAS model mice. Thus, we present a novel therapeutic strategy to target G4RNA prionoids.


2020 ◽  
Vol 23 (3) ◽  
pp. 386-397 ◽  
Author(s):  
Caitlin M. Rodriguez ◽  
Shannon E. Wright ◽  
Michael G. Kearse ◽  
Jill M. Haenfler ◽  
Brittany N. Flores ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document