P–514 RAN-Translation in Fragile X associated Premature Ovarian Insufficiency (FXPOI): FMRpolyG as a predictive tool

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
X P Nguyen ◽  
B Messmer ◽  
J E Dietrich ◽  
K Hinderhofer ◽  
T Strowitzki ◽  
...  

Abstract Study question Does repeat-associated non-AUG (RAN) translation lead to accumulation of polyglycine- containing protein (FMRpolyG) in human lymphocytes and mural granulosa cells of FMR1 premutation carriers? Summary answer Lymphocytes and granulosa cells from FMR1 premutation carriers contain intracellular inclusions that stain positive for both FMRpolyG and ubiquitin. What is known already: Fragile-X-associated-Primary-Ovarian-Insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism associated with the expansion of CGG-repeats in the 5’UTR of FMR1, called premutation (PM) (n: 55–200). Approximately 20% of women carrying a FMR1-premutation (PM) allele develop FXPOI. RAN-translation dependent on variable CGG-repeat length is hypothesized to cause FXPOI due to the production of a polyglycine-containing FMR1-protein, FMRpolyG. Recently, FMRpolyG inclusions were found in neuronal brain cells of FXTAS patients and stromal cells of the ovary of an FXPOI patient. Study design, size, duration: Lymphocytes and granulosa cells (GCs) from women with PM (6) and women without PM (10) (controls) were analyzed by immunofluorescence (IF) staining for the presence of inclusions positive for ubiquitin and FMRpolyG. Cell lysis and protein extraction samples were subjected to Fluorescent Western Blot (WB) analysis to detect FMRP and FMRpolyG Participants/materials, setting, methods Human GCs were obtained from follicular fluid after oocyte retrieval and lymphocytes were isolated from peripheral blood using Ficoll-Paque. Cells suspended in PBS were adhered to a glass-coverslip placed at the bottom of the 6-well culture plate, via gravity sedimentation. Adhered cells were fixed, IF staining for FMRpolyG and ubiquitin was performed and analyzed by fluorescence microscopy. Fluorescent WB was used to demonstrate the expression of FMRP, FMRpolyG in extracted protein from lymphocytes and GCs. Main results and the role of chance FMRP was successfully detected by fluorescence WB in both lymphocytes and GCs. FMRP is mainly present in cytoplasm and was expressed in greater amount in GCs than in leukocytes. Moreover, FMRP expression was significantly decreased in GCs from FMR1-PM compared with controls. Lymphocytes from PM-carriers and controls were immunostained for FMRpolyG and ubiquitin. In PM-carriers, FMRpolyG was present as aggregates, whereas in controls only a weak signal without inclusions was detectable. The expression pattern of FMRpolyG in GCs was similar to that in lymphocytes with a significant increase in PM-carriers. There, the FMRpolyG-aggregates additionally demonstrated as ubiquitin-positive inclusions. These may resemble the toxic potential of these protein fractions involved the ovarian damage in developing FXPOI. Limitations, reasons for caution More patients are needed to support the present findings. Further investigation into the possible consequences of these FMRpolyG-positive inclusions in PM-carriers is also advisable. Wider implications of the findings: We found for the first time FMRpolyG-accumulation in lymphocytes and GCs from FMR1-PM-carriers in ubiquitin-positive inclusions. Future experiments evaluating consistency in more patients and elucidating the impact on fertility and prospective value for individual ovarian reserve are therefore in preparation. Trial registration number Not applicable

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moran Friedman-Gohas ◽  
Raoul Orvieto ◽  
Abigael Michaeli ◽  
Adva Aizer ◽  
Michal Kirshenbaum ◽  
...  

AbstractFMR1 premutation (55–200 CGG repeats) results in fragile X-associated primary ovarian insufficiency (FXPOI). We evaluated expression levels of folliculogenesis-related mediators, follicle-stimulating hormone (FSH) receptor and anti-Mullerian hormone (AMH), to gain insights into the mechanisms underlying the reduced ovarian function. Mural granulosa cells (MGCs) were collected from FMR1 premutation carriers and noncarriers undergoing IVF treatments. At baseline, MGCs of carriers demonstrated significantly higher mRNA expression levels of AMH (3.5 ± 2.2, n = 12 and 0.97 ± 0.5, n = 17, respectively; p = 0.0003) and FSH receptor (5.6 ± 2.8 and 2.7 ± 2.8, respectively; p = 0.02) and higher AMH protein expression on immunostaining. Accordingly, FMR1 premutation-transfected COV434 cells exhibited higher AMH protein expression than COV434 cells transfected with 20 CGG repeats. We conclude that FMR1 premutation may lead to dysregulation of AMH expression levels, probably due to a compensatory mechanism. Elucidating the pathophysiology of FXPOI may help in early detection of ovarian dysfunction and tailoring IVF treatments to FMR1 premutation carriers.


2021 ◽  
Author(s):  
Mary Rebecca Glineburg ◽  
Yuan Zhang ◽  
Elizabeth M Tank ◽  
Sami Barmada ◽  
Peter Todd

RNAs derived from expanded nucleotide repeats form detectable foci in patient cells and these foci are thought to contribute to disease pathogenesis. The most widely used method for detecting RNA foci is fluorescence in situ hybridization (FISH). However, FISH is prone to low sensitivity and photo-bleaching that can complicate data interpretation. Here we applied hybridization chain reaction (HCR) as an alternative approach to repeat RNA foci detection of GC-rich repeats in two neurodegenerative disorders: GGGGCC (G4C2) hexanucleotide repeat expansions in C9orf72 that cause amyotrophic lateral sclerosis and frontotemporal dementia (C9 ALS/FTD) and CGG repeat expansions in FMR1 that cause Fragile X-associated tremor/ataxia syndrome. We found that HCR of both G4C2 and CGG repeats has comparable specificity to traditional FISH, but is >40x more sensitive and shows repeat-length dependence in its intensity. HCR is better than FISH at detecting both nuclear and cytoplasmic foci in human C9 ALS/FTD fibroblasts, patient iPSC derived neurons, and patient brain samples. We used HCR to determine the impact of integrated stress response (ISR) activation on RNA foci number and distribution. G4C2 repeat RNA did not readily co-localize with the stress granule marker G3BP1, but ISR induction increased both the number of detectible nuclear RNA foci and the nuclear/cytoplasmic foci ratio in patient fibroblasts and patient derived neurons. Taken together, these data suggest that HCR can be a useful tool for detecting repeat expansion mRNA in C9 ALS/FTD and other repeat expansion disorders.


2022 ◽  
Vol 15 ◽  
Author(s):  
Lauren M. Schmitt ◽  
Kelli C. Dominick ◽  
Rui Liu ◽  
Ernest V. Pedapati ◽  
Lauren E. Ethridge ◽  
...  

Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5′ untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a “full mutation,” clinically Fragile X Syndrome (FXS), whereas 55 – 200 repeats result in a “premutation.” FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17–78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Xin-hua Wang ◽  
Xiao-hua Song ◽  
Yan-lin Wang ◽  
Xing-hua Diao ◽  
Tong Li ◽  
...  

Up to 50% of recurrent miscarriage cases in women occur without an underlying etiology. In the current prospective case–control study, we determined the impact of CGG trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in 49 women with unexplained recurrent miscarriages. Case group consisted of women with two or more unexplained consecutive miscarriages. Blood samples were obtained and checked for the presence of expanded alleles of the FMR1 gene using PCR. Patients harboring the expanded allele, with a threshold set to 40 repeats, were further evaluated by sequencing. The number of abortions each woman had, was not associated with her respective CGG repeat number (P=0.255). The repeat sizes of CGG expansion in the FMR1 gene were significantly different in the two population groups (P=0.027). All the positive cases involved intermediate zone carriers. Hence, the CGG expanded allele of the FMR1 gene might be associated with unexplained multiple miscarriages; whether such an association is coincidental or causal can be confirmed by future studies using a larger patient cohort.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd9440
Author(s):  
Sefan Asamitsu ◽  
Yasushi Yabuki ◽  
Susumu Ikenoshita ◽  
Kosuke Kawakubo ◽  
Moe Kawasaki ◽  
...  

Fragile X-related tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease caused by CGG triplet repeat expansions in FMR1, which elicit repeat-associated non-AUG (RAN) translation and produce the toxic protein FMRpolyG. We show that FMRpolyG interacts with pathogenic CGG repeat-derived RNA G-quadruplexes (CGG-G4RNA), propagates cell to cell, and induces neuronal dysfunction. The FMRpolyG polyglycine domain has a prion-like property, preferentially binding to CGG-G4RNA. Treatment with 5-aminolevulinic acid, which is metabolized to protoporphyrin IX, inhibited RAN translation of FMRpolyG and CGG-G4RNA–induced FMRpolyG aggregation, ameliorating aberrant synaptic plasticity and behavior in FXTAS model mice. Thus, we present a novel therapeutic strategy to target G4RNA prionoids.


Sign in / Sign up

Export Citation Format

Share Document