scholarly journals The Protective Role of Bacillus anthracis Exosporium in Macrophage‐Mediated Killing by Nitric Oxide

2007 ◽  
Vol 21 (5) ◽  
Author(s):  
John Weaver ◽  
Tae Jin Kang ◽  
Kimberly Raines ◽  
Guan‐Liang Cao ◽  
Stephen Hibbs ◽  
...  
Author(s):  
John Weaver ◽  
Tae Jin Kang ◽  
Kimberly Raines ◽  
Guan-Liang Cao ◽  
Stephen Hibbs ◽  
...  

The ability of the endospore-forming, gram-positive bacterium Bacillus anthracis to survive exposure to antibacterial killing mechanisms by activated macrophages is key to its germination and survival. These antibacterial killing mechanisms include, but are not limited to the generation of free radicals such as nitric oxide (•NO) and superoxide (O2•−) from the upregulation of inducible nitric oxide synthase (NOS 2) along with products derived from them, e.g., peroxynitrite (ONOO−), as part of microbicidal activity. However questions still remain as to how these species are involved in microbial killing, specifically with respect to B. anthracis. In a previous study, we demonstrated that exposure of primary murine macrophages to sonicated B. anthracis endospores up-regulated NOS 2 and demonstrated a •NO-dependent bactericidal response, but unanswered in that study was which of the NOS 2-derived reactive oxygen species was responsible for the observed bactericidal response. Since NOS 2 also generates O2•−, experiments were designed to determine whether NOS 2 formed ONOO− from the reaction of •NO with O2•− and if so, was ONOO− microbicidal toward B. anthracis.


2007 ◽  
Vol 75 (8) ◽  
pp. 3894-3901 ◽  
Author(s):  
John Weaver ◽  
Tae Jin Kang ◽  
Kimberly W. Raines ◽  
Guan-Liang Cao ◽  
Stephen Hibbs ◽  
...  

ABSTRACT The ability of the endospore-forming, gram-positive bacterium Bacillus anthracis to survive in activated macrophages is key to its germination and survival. In a previous publication, we discovered that exposure of primary murine macrophages to B. anthracis endospores upregulated NOS 2 concomitant with an ·NO-dependent bactericidal response. Since NOS 2 also generates O2·−, experiments were designed to determine whether NOS 2 formed peroxynitrite (ONOO−) from the reaction of ·NO with O2·− and if so, was ONOO− microbicidal toward B. anthracis. Our findings suggest that ONOO− was formed upon macrophage infection by B. anthracis endospores; however, ONOO− does not appear to exhibit microbicidal activity toward this bacterium. In contrast, the exosporium of B. anthracis, which exhibits arginase activity, protected B. anthracis from macrophage-mediated killing by decreasing ·NO levels in the macrophage. Thus, the ability of B. anthracis to subvert ·NO production has important implications in the control of B. anthracis-induced infection.


2013 ◽  
Vol 37 ◽  
pp. 1155-1165 ◽  
Author(s):  
Farhana KAUSAR ◽  
Muhammad SHAHBAZ ◽  
Muhammad ASHRAF

2015 ◽  
Vol 29 (2) ◽  
pp. 854-862 ◽  
Author(s):  
Rishi Pal ◽  
Manju J. Chaudhary ◽  
Prafulla C. Tiwari ◽  
Suresh Babu ◽  
K.K. Pant

2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


2020 ◽  
Vol 21 (22) ◽  
pp. 8521 ◽  
Author(s):  
Elena Forte ◽  
Alessandro Giuffrè ◽  
Li-shar Huang ◽  
Edward A. Berry ◽  
Vitaliy B. Borisov

Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.


2004 ◽  
Vol 286 (1) ◽  
pp. G60-G67 ◽  
Author(s):  
Yoshiya Ito ◽  
Edward R. Abril ◽  
Nancy W. Bethea ◽  
Robert S. McCuskey

Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l- N6-(1-iminoethyl)-lysine (l-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. l-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas l-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. l-NIL, but not l-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. l-NIL restored the sinusoidal perfusion, but l-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. l-NIL tended to minimize this infiltration, whereas l-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by l-NIL, whereas l-NAME further elevated it. l-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. l-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury.


Sign in / Sign up

Export Citation Format

Share Document