inos inhibitor
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 19)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Charles N. Zawatsky ◽  
Joshua K. Park ◽  
Jasmina Abdalla ◽  
George Kunos ◽  
Malliga R. Iyer ◽  
...  

Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5765
Author(s):  
Yung-Shun Su ◽  
Ming-Der Wu ◽  
Jih-Jung Chen ◽  
Ming-Jen Cheng ◽  
Yueh-Hsiung Kuo ◽  
...  

Phytochemical investigation and chromatographic separation of extracts from one new actinobacteria strain Amycolatopsis taiwanensis that was isolated from soil of Yilan township, in the north of Taiwan, led to the isolation of nine new compounds, amycolataiwanensins A–I (1–9, resp.), and one new natural product, namely amycolataiwanensin J (10). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic-data analysis (1D- and 2D-NMR, MS, and UV) and comparison with literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3, 5, 7 and 8 exhibited potent anti-NO production activity, with IC50 values of 17.52, 12.31, 17.81 and 13.32 μM, respectively, compared to that of quercetin, an iNOS inhibitor with an IC50 value of 35.94 μM. This is the first report on indole metabolite from the genus Amycolatopsis.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5089
Author(s):  
Luis Santos-Molina ◽  
Alexa Herrerias ◽  
Charles N. Zawatsky ◽  
Ozge Gunduz-Cinar ◽  
Resat Cinar ◽  
...  

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a “two-bottle” as well as a “drinking in the dark” paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Skye Hsin-Hsien Yeh ◽  
Wen-Sheng Huang ◽  
Chuang-Hsin Chiu ◽  
Chuan-Lin Chen ◽  
Hui-Ting Chen ◽  
...  

Background. Inducible nitric oxide synthase (iNOS) plays a crucial role in neuroinflammation, especially microglial activity, and may potentially represent a useful biomarker of neuroinflammation. In this study, we carefully defined a strategic plan to develop iNOS-targeted molecular PET imaging using (4 ′ -amino-5 ′ ,8 ′ -difluoro-1 ′ H-spiro[piperidine-4,2 ′ -quinazolin]-1-yl)(4-fluorophenyl)methanone ([18F]FBAT) as a tracer in a mouse model of lipopolysaccharide- (LPS-) induced brain inflammation. Methods. An in vitro model, murine microglial BV2 cell line, was used to assess the uptake of [18F]FBAT in response to iNOS induction at the cellular level. In vivo whole-body dynamic PET/MR imaging was acquired in LPS-treated (5 mg/kg) and control mice. Standard uptake value (SUV), total volume of distribution ( V t ), and area under the curve (AUC) based on the [18F]FBAT PET signals were determined. The expression of iNOS was confirmed by immunohistochemistry (IHC) of brain tissues. Results. At the end of synthesis, the yield of [18F]FBAT was 2.2–3.1% (EOS), radiochemical purity was >99%, and molar radioactivity was 125–137 GBq/μmol. In vitro, [18F]FBAT rapidly and progressively accumulated in murine microglial BV2 cells exposed to LPS; however, [18F]FBAT accumulation was inhibited by aminoguanidine, a selective iNOS inhibitor. In vivo biodistribution studies of [18F]FBAT showed a significant increase in the liver and kidney on LPS-treated mice. At 3 h postinjection of LPS, in vivo, the [18F]FBAT accumulation ratios at 30 min post intravenous (i.v.) radiotracer injection for the whole brain, cortex, cerebellum, and brainstem were 2.16 ± 0.18 , 1.53 ± 0.25 , 1.41 ± 0.21 , and 1.90 ± 0.12 , respectively, compared to those of mice not injected with LPS. The mean area under the curve (AUC0-30min), total volume of distribution ( V t , mL/cm3), and K i (influx rate) of [18F]FBAT were 1.9 ± 0.21 - and 1.4 ± 0.22 -fold higher in the 3 h LPS group, respectively, than in the control group. In the pharmacokinetic two-compartment model, the whole brain K i of [18F]FBAT was significantly higher in mice injected with LPS compared to the control group. Aminoguanidine, selective iNOS inhibitor, pretreatment significantly reduced the AUC0-30min and V t values in LPS-induced mice. Quantitative analysis of immunohistochemically stained brain sections confirmed iNOS was preferentially upregulated in the cerebellum and cortex of mice injected with LPS. Conclusion. An automated robotic method was established for radiosynthesis of [18F]FBAT, and the preliminary in vitro and in vivo results demonstrated the feasibility of detecting iNOS activity/expression in LPS-treated neuroinflammation by noninvasive imaging with [18F]FBAT PET/MRI.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 383
Author(s):  
Ana M. Mueller-Buehl ◽  
Teresa Tsai ◽  
José Hurst ◽  
Carsten Theiss ◽  
Laura Peters ◽  
...  

In retinal organ cultures, H2O2 can be used to simulate oxidative stress, which plays a role in the development of several retinal diseases including glaucoma. We investigated whether processes underlying oxidative stress can be prevented in retinal organ cultures by an inducible nitric oxide synthase (iNOS)-inhibitor. To this end, porcine retinal explants were cultivated for four and eight days. Oxidative stress was induced via 300 µM H2O2 on day one for three hours. Treatment with the iNOS-inhibitor 1400 W was applied simultaneously, remaining for 72 h. Retinal ganglion cells (RGC), bipolar and amacrine cells, apoptosis, autophagy, and hypoxia were evaluated immunohistologically and by RT-qPCR. Additionally, RGC morphology was analyzed via transmission electron microscopy. H2O2-induced RGCs loss after four days was prevented by the iNOS-inhibitor. Additionally, electron microscopy revealed a preservation from oxidative stress in iNOS-inhibitor treated retinas at four and eight days. A late rescue of bipolar cells was seen in iNOS-inhibitor treated retinas after eight days. Hypoxic stress and apoptosis almost reached the control situation after iNOS-inhibitor treatment, especially after four days. In sum, the iNOS-inhibitor was able to prevent strong H2O-induced degeneration in porcine retinas. Hence, this inhibitor seems to be a promising treatment option for retinal diseases.


2021 ◽  
Vol 22 (2) ◽  
pp. 965
Author(s):  
Lalita Subedi ◽  
Silvia Yumnam

We have previously reported that phytochemicals from Abies holophylla exhibit anti-inflammatory and neuroprotective effects by decreasing nitrite production and increasing nerve growth factor production. However, the exact mechanism underscoring these effects has not been revealed. In the present study, we aimed to explore the underlying anti-inflammatory mechanisms of A. holophylla and its phytochemicals. We studied various solvent fractions of A. holophylla and found the chloroform and hexane sub-fractions showed the most significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-activated murine microglia. Concomitantly, the terpenoids isolated from chloroform and hexane fractions showed similar anti-neuroinflammatory effects with significant inhibition of NO and reactive oxygen species production, and decreased protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase. Interestingly, these terpenoids inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), which further inhibited the production of pro-inflammatory mediators, including prostaglandin E2, tumor necrosis factor, and interleukins (IL-6 and IL-1β), with a potency greater than that of the well-known iNOS inhibitor NG-mono-methyl-L-arginine (L-NMMA). These results suggest that the chloroform- and hexane-soluble fraction mediated the mitogen-activated protein kinase (MAPK) inhibition, in particular the JNK pathway, thereby lowering the inflammatory cascades in LPS-activated murine microglia. Thus, our study suggests that the chloroform and hexane fractions of A. holophylla and their terpenoids may be potential drug candidates for drug discovery against LPS-induced neuroinflammation and neuroinflammatory-related neurodegeneration.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yixi Liu ◽  
Che Cheng ◽  
Xiaoqiang Sun ◽  
Jing Cao ◽  
Peng Zhou ◽  
...  

Background: Recent evidence links impaired nitric oxide (NO) signaling pathway in the pathogenesis of diabetes-induced cardiac dysfunction. However, the different nitric oxide synthases (NOS) isoforms involved in this pathology are controversial. Recent reports have shown that in failing myocardium, increased inducible NOS (iNOS) contributes to the attenuation of β-adrenergic receptor (AR)-mediated inotropic effect. The alteration and functional significance of cardiac iNOS in diabetic cardiomyopathy (DCM) are unclear. We assessed the hypothesis that increased cardiomyocyte iNOS expression and stimulation may inhibit myocyte contraction, relaxation, [Ca 2+ ] i transient ([Ca 2+ ] iT ), and depress its response to β-AR stimulation, thereby directly contributing to the functional impairment in DCM. Methods: Left ventricular (LV) myocyte protein levels of 3 NOS and myocyte functional responses were evaluated in 2 groups of wild-type female mice (11/group): control and DCM-induced by streptozotocin (STZ) (at 10 weeks after receiving 200 mg/kg STZ, ip). In DCM, we further assessed myocyte contractile and ([Ca 2+ ] iT ) responses to β-AR stimulation by isoproterenol (ISO, 10 -8 M) with and without pretreatment of myocytes with a selective iNOS inhibitor, 1400W (10 -5 M). Results: Compared with controls, DCM myocytes had significantly increased iNOS (1.76 vs 1.03) with decreased eNOS (0.29 vs 0.34), but relatively unchanged nNOS (0.17 vs 0.18). These changes were followed by significantly reduced basal cell contraction (dL/dt max , 73.8 vs 140.7 μm/s), relaxation (dR/dt max , 61.5 vs 121.1 μm/s) and [Ca 2+ ] iT (0.17 vs 0.20). ISO-stimulated increases in dL/dt max (32% vs 59%), dR/dt max (30% vs 55%) and [Ca 2+ ] iT (17% vs 31%) were also significantly reduced. Moreover, in DCM myocytes, pretreatment with 1400W markedly improved myocyte basal contraction (128.0 μm/s) and relaxation (111.7 μm/s). The ISO-induced increases in dL/dt max (55%), dR/dt max (52%), and [Ca 2+ ] iT (29%) were also significantly augmented. Conclusions: Our findings indicate that myocardial iNOS is activated in diabetic mice and suggest that increased iNOS expression contributes to depressed myocardial contractility, impaired [Ca 2+ ] i regulation and β-adrenergic hyporesponsiveness.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1047
Author(s):  
Chiu-Li Yeh ◽  
Sharon Angela Tanuseputero ◽  
Jin-Ming Wu ◽  
Yi-Ru Tseng ◽  
Po-Jen Yang ◽  
...  

This study investigated the effects of a single dose of arginine (Arg) administration at the beginning of sepsis on CD4+ T-cell regulation and liver inflammation in C57BL/6J mice. Mice were divided into normal control (NC), sham (SH), sepsis saline (SS), and sepsis Arg (SA) groups. An inducible nitric oxide (NO) synthase (iNOS) inhibitor was administered to additional sepsis groups to evaluate the role of NO during sepsis. Sepsis was induced using cecal ligation and puncture (CLP). The SS and SA groups received saline or Arg (300 mg/kg body weight) via tail vein 1 h after CLP. Mice were euthanized at 12 and 24 h post-CLP. Blood, para-aortic lymph nodes, and liver tissues were collected for further measurement. The findings showed that sepsis resulted in decreases in blood and para-aortic lymph node CD4+ T-cell percentages, whereas percentages of interleukin (IL)-4- and IL-17-expressing CD4+ T cells were upregulated. Compared to the SS group, Arg administration resulted in maintained circulating and para-aortic lymph node CD4+ T cells, an increased Th1/Th2 ratio, and a reduced Th17/Treg ratio post-CLP. In addition, levels of plasma liver injury markers and expression of inflammatory genes in liver decreased. These results suggest that a single dose of Arg administered after CLP increased Arg availability, sustained CD4+ T-cell populations, elicited more-balanced Th1/Th2/Th17/Treg polarization in the circulation and the para-aortic lymph nodes, and attenuated liver inflammation in sepsis. The favorable effects of Arg were abrogated when an iNOS inhibitor was administered, which indicated that NO may be participated in regulating the homeostasis of Th/Treg cells and subsequent liver inflammation during sepsis.


2020 ◽  
Vol 24 (7) ◽  
pp. 4312-4323 ◽  
Author(s):  
José Hurst ◽  
Ana Maria Mueller‐Buehl ◽  
Lisa Hofmann ◽  
Sandra Kuehn ◽  
Fenja Herms ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document