scholarly journals Regulation of Δ9‐desaturase activity by dietary fatty acids in lactating dairy cows

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Erin E Mosley ◽  
Bahman Shafii ◽  
Mark A McGuire
2002 ◽  
Vol 2002 ◽  
pp. 181-181
Author(s):  
A.L. Lock ◽  
P.C. Garnsworthy

The Δ9 -desaturase system (steroyl-CoA desaturase) involves the addition of a cis double bond between carbons 9 and 10 of fatty acids. The conversion of stearic acid (C18:0) to oleic acid (cis-9 C18:1) is the predominant precursor:product of this enzyme system; conversion of saturated fatty acids (SFA) to mono-unsaturated fatty acids (MUFA) is important in determining the fluidity of milk. In previous studies (Lock & Garnsworthy 2001), we have shown that more than 50% of the oleic acid occurring in milk is produced in the mammary gland via Δ9 -desaturase. We also found that the conversion of trans-11 C18:1 to cis-9, trans-11 conjugated linoleic acid (CLA) accounted for ~80% of milk fat CLA. Increasing the activity of Δ9 -desaturase offers the opportunity of increasing the MUFA content of milk, especially oleic acid, while decreasing its SFA content, as well as increasing the CLA content of milk. Lock & Garnsworthy, (2001) also reported that there were significant differences between individual cows with regard to milk fat CLA content. In an earlier study (Lock & Garnsworthy, 2000) we found that the CLA content of milk varied throughout the year, with highest values occurring when cows received fresh pasture. In view of the significant contribution of Δ9 -desaturase to the CLA and MUFA content of milk, the objective of the work reported here was to investigate individual animal and dietary variation in Δ9 -desaturase activity in the mammary gland of lactating dairy cows.


1993 ◽  
Vol 76 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Yong Kook Kim ◽  
David J. Schingoethe ◽  
David P. Casper ◽  
Fenton C. Ludens

2000 ◽  
Vol 83 (11) ◽  
pp. 2620-2628 ◽  
Author(s):  
D.C. Donovan ◽  
D.J. Schingoethe ◽  
R.J. Baer ◽  
J. Ryali ◽  
A.R. Hippen ◽  
...  

2000 ◽  
Vol 130 (9) ◽  
pp. 2285-2291 ◽  
Author(s):  
J. M. Griinari ◽  
B. A. Corl ◽  
S. H. Lacy ◽  
P. Y. Chouinard ◽  
K. V. V. Nurmela ◽  
...  

2014 ◽  
Vol 63 (244) ◽  
pp. 563-573 ◽  
Author(s):  
J.E. Freitas Júnior ◽  
F.P. Rennó ◽  
J.R. Gandra ◽  
L.N. Rennó ◽  
A.C. Rego ◽  
...  

2018 ◽  
Vol 101 (11) ◽  
pp. 10536-10556 ◽  
Author(s):  
L.F. Greco ◽  
J.T. Neves Neto ◽  
A. Pedrico ◽  
F.S. Lima ◽  
R.S. Bisinotto ◽  
...  

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 626-626
Author(s):  
Mallikarjun C. Bidarimath ◽  
Leslie A. MacLaren ◽  
Modou Camara ◽  
Melissa A. Moggy ◽  
Alan Fredeen ◽  
...  

1993 ◽  
Vol 69 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Jan Dijkstra ◽  
Huug Boer ◽  
Jaap Van Bruchem ◽  
Marianne Bruining ◽  
Seerp Tamminga

The effect of rumen liquid volume, pH and concentration of volatile fatty acids (VFA) on the rates of absorption of acetic, propionic and butyric acids from the rumen was examined in lactating dairy cows. Experimental solutions introduced into the emptied, washed rumen comprised two different volumes (10 or 30 1), four levels of pH (4.5, 5.4, 6.3, 7.2) and three levels of individual VFA concentrations (20, 50 or 100 mM-acetic, propionic or butyric acid). All solutions contained a total of 170 mM-VFA and an osmotic value of 400 mOsmol/l. Absorption rates were calculated from the disappearance of VFA from the rumen corrected for passage with liquid phase to the omasum. An increase in initial fluid pH caused a reduction in fractional absorption rates of propionic and butyric acids. Increasing the initial pH from 4.5 to 7.2 reduced fractional absorption rates of acetic, propionic and butyric acids from 0.35, 0.67 and 0.85 to 0.21, 0.35 and 0.28/h respectively. The fractional absorption rates of all VFA were reduced (P < 0.05) by an increase in initial rumen volume. The fractional absorption rate of acetic acid was lower (P < 0.05) at an initial concentration of 20 mM than of 50 mM. The fractional absorption rate of propionic acid tended (P < 0.10) to decrease as the level of concentration increased while fractional absorption rate of butyric acid was not affected by butyric acid concentration. These results indicate that relative concentrations of VFA in rumen fluid might not represent relative production rates and that attempts to estimate individual VFA production from substrate digestion must take account of pH and VFA concentration.


Sign in / Sign up

Export Citation Format

Share Document