scholarly journals Expression Level of Canonical Transient Receptor Potential (TRPC) Channels is Increased in the Adrenal Medulla of Ossabaw Miniature Pigs Manifesting the Metabolic Syndrome

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Guoqing Hu ◽  
Zachary P Neeb ◽  
Michael Sturek ◽  
Alexander G Obukhov
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhi-Chuan Sun ◽  
Sui-Bin Ma ◽  
Wen-Guang Chu ◽  
Dong Jia ◽  
Ceng Luo

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


2011 ◽  
Vol 111 (2) ◽  
pp. 573-586 ◽  
Author(s):  
Michael Sturek

Chronic exercise attenuates coronary artery disease (CAD) in humans largely independent of reductions in risk factors; thus major protective mechanisms of exercise are directly within the coronary vasculature. Further, tight control of diabetes, e.g., blood glucose, can be detrimental. Accordingly, knowledge of mechanisms by which exercise attenuates diabetic CAD could catalyze development of molecular therapies. Exercise attenuates CAD (atherosclerosis) and restenosis in miniature swine models, which enable precise control of exercise parameters (intensity, duration, and frequency) and characterization of the metabolic syndrome (MetS) and diabetic milieu. Intracellular Ca2+ is a pivotal second messenger for coronary smooth muscle (CSM) excitation-contraction and excitation-transcription coupling that modulates CSM proliferation, migration, and calcification. CSM of diabetic dyslipidemic Yucatan swine have impaired Ca2+ extrusion via the plasmalemma Ca2+ ATPase (PMCA), downregulation of L-type voltage-gated Ca2+ channels (VGCC), increased Ca2+ sequestration by the sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA), increased nuclear Ca2+ localization, and greater activation of K channels by Ca2+ release from the SR. Endurance exercise training prevents Ca2+ transport changes with virtually no effect on the diabetic milieu (glucose, lipids). In MetS Ossabaw swine transient receptor potential canonical (TRPC) channels are upregulated and exercise training reverses expression and TRPC-mediated Ca2+ influx with almost no change in the MetS milieu. Overall, exercise effects on Ca2+ signaling modulate CSM phenotype. Future studies should 1) selectively target key Ca2+ transporters to determine definitively their causal role in atherosclerosis and 2) combine mechanistic studies with clinical outcomes, e.g., reduction of myocardial infarction.


2003 ◽  
Vol 278 (24) ◽  
pp. 21649-21654 ◽  
Author(s):  
Guillermo Vazquez ◽  
Barbara J. Wedel ◽  
Mohamed Trebak ◽  
Gary St. John Bird ◽  
James W. Putney

2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


Sign in / Sign up

Export Citation Format

Share Document