scholarly journals Protein kinase C α phosphorylates argininosuccinate synthase at serine 328 in endothelial cells to affect nitric oxide production

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Ricci Haines ◽  
Karen Corbin ◽  
Laura Pendleton ◽  
Duane Eichler
2009 ◽  
Vol 111 (5) ◽  
pp. 1036-1043 ◽  
Author(s):  
Yoshitaka Inamura ◽  
Masami Miyamae ◽  
Shingo Sugioka ◽  
Kazuhiro Kaneda ◽  
Chika Okusa ◽  
...  

Background It remains controversial whether aprotinin use during cardiac surgery is cardioprotective or detrimental. In contrast, volatile anesthetics may offer cardioprotection perioperatively. Increased nitric oxide, protein kinase C activation, and glycogen synthase kinase 3beta inhibition play a role in sevoflurane-induced cardioprotection. The authors investigated whether aprotinin affects sevoflurane postconditioning. Methods Isolated guinea pig hearts underwent 30 min of global ischemia and 120 min of reperfusion (control [CTL]). Postconditioning was elicited with sevoflurane (2%) for 2 min at reperfusion onset (POST). Aprotinin (250 kallikrein inhibitor units/ml) was administered for 5 min at reperfusion onset (POST + APRO and CTL + APRO). In additional experiments, both sevoflurane and aprotinin were given before ischemia and throughout the reperfusion period (SEVO + APRO (throughout)) to mimic clinical conditions. Left ventricular developed and end-diastolic pressures and infarct size were measured. Western blot analysis determined phosphorylated protein kinase C-delta, protein kinase C-delta, Akt, and glycogen synthase kinase 3beta expression. Nitric oxide production during reperfusion was measured by nitric oxide sensor. Results After ischemia-reperfusion, POST had significantly higher left ventricular developed (56 +/- 11 vs. 26 +/- 8 mmHg [mean +/- SD]) and lower end-diastolic pressures (20 +/- 9 vs. 47 +/- 15 mmHg) and reduced infarct size (15 +/- 3% vs. 41 +/- 10%) versus CTL. Aprotinin abolished these improvements. Expressions of phospho-Akt (activated), phospho-protein kinase C-delta (activated), and phospho-glycogen synthase kinase 3beta (inhibited) were significantly increased in POST. Aprotinin attenuated these increased expressions. Nitric oxide production after reperfusion was higher in POST than in CTL, but not in POST + APRO. Conclusions Aprotinin abolishes sevoflurane postconditioning, associated with inhibited phosphorylation of Akt, protein kinase C-delta, and glycogen synthase kinase 3beta and reduced nitric oxide production.


2009 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Jin-Jer Chen ◽  
Cheng-Hsien Chen ◽  
Kar-Lok Wong

Background Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. Methods Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. Results The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. Conclusions The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.


2013 ◽  
Vol 24 (3) ◽  
pp. 398-408 ◽  
Author(s):  
Arif Yurdagul ◽  
Jie Chen ◽  
Steven Daniel Funk ◽  
Patrick Albert ◽  
Christopher G. Kevil ◽  
...  

Shear stress generated by distinct blood flow patterns modulates endothelial cell phenotype to spatially restrict atherosclerotic plaque development. Signaling through p21-activated kinase (PAK) mediates several of the deleterious effects of shear stress, including enhanced NF-κB activation and proinflammatory gene expression. Whereas shear stress activates PAK in endothelial cells on a fibronectin matrix, basement membrane proteins limit shear-induced PAK activation and inflammation through a protein kinase A–dependent pathway; however, the mechanisms underlying this regulation were unknown. We show that basement membrane proteins limit membrane recruitment of PAK2, the dominant isoform in endothelial cells, by blocking its interaction with the adaptor protein Nck. This uncoupling response requires protein kinase A–dependent nitric oxide production and subsequent PAK2 phosphorylation on Ser-20 in the Nck-binding domain. Of importance, shear stress does not stimulate nitric oxide production in endothelial cells on fibronectin, resulting in enhanced PAK activation, NF-κB phosphorylation, ICAM-1 expression, and monocyte adhesion. These data demonstrate that differential flow–induced nitric oxide production regulates matrix-specific PAK signaling and describe a novel mechanism of nitric oxide–dependent NF-κB inhibition.


Sign in / Sign up

Export Citation Format

Share Document