scholarly journals Inositol phosphate regulation of variant surface glycoprotein expression in Trypanosoma brucei (232.3)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Igor Cestari
2015 ◽  
Vol 112 (21) ◽  
pp. E2803-E2812 ◽  
Author(s):  
Igor Cestari ◽  
Ken Stuart

African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing.


2015 ◽  
Vol 200 (1-2) ◽  
pp. 1-4 ◽  
Author(s):  
Kiantra Ramey-Butler ◽  
Elisabetta Ullu ◽  
Nikolay G. Kolev ◽  
Christian Tschudi

Biochemistry ◽  
1990 ◽  
Vol 29 (36) ◽  
pp. 8217-8223 ◽  
Author(s):  
Paul Rehaber ◽  
Norbert Staudacher ◽  
Robert Seckler ◽  
Roland Buelow ◽  
Peter Overath ◽  
...  

1987 ◽  
Vol 7 (1) ◽  
pp. 357-364
Author(s):  
M G Lee ◽  
L H Van der Ploeg

The expression of several surface antigen genes in Trypanosoma brucei is mediated by the duplicative transposition of a basic-copy variant surface glycoprotein (VSG) gene into an expression site. We determined that the appearance of variant 118, in a parasitemia, resulted from at least four independent duplicative transpositions of the same VSG 118 gene. Variants 117 and 118 both appeared at specific periods but resulted from multiple independent activations. Antigenic variants thus occur in an ordered manner. We show that in the duplicative transpositions of VSG genes, the ends of the transposed segments were homologous between the basic copy and the expression site. Sequences other than the previously reported 70-base-pair (bp) repeats could be involved. In one variant, 118 clone 1, the homology was between a sequence previously transposed into the expression site and a sequence located 6 kilobases upstream of the VSG 118 gene. In variant 118b the homology was presumably in 70-bp repeat arrays, while in a third 118 variant yet another sequence was involved. The possibility that the 70-bp repeats are important in the initial steps of the recombinational events was illustrated by a rearrangement involving a 70-bp repeat array. The data provide strong evidence for the notion that gene conversion mediates the duplicative transposition of VSG genes. We discuss a model that explains how the process of duplicative transposition can occur at random and still produce an ordered appearance of variants.


1991 ◽  
Vol 11 (1) ◽  
pp. 338-343
Author(s):  
D Jefferies ◽  
P Tebabi ◽  
E Pays

The putative promoter of the variant surface glycoprotein (VSG) gene of Trypanosoma brucei was cloned into a plasmid containing the chloramphenicol acetyltransferase (CAT) gene. After electroporation into trypanosomes, this construct directed the expression of the CAT reporter gene. The essential region for promoter activity was found to reside within 88 bp upstream of the putative transcription start site. Transcription of the CAT construct occurred at approximately the same level in both bloodstream and procyclic forms and was resistant to alpha-amanitin. However, CAT expression appeared to be modulated in the two forms of the parasite. Sequences 3' to the gene seemed to be important in this respect, as CAT activity in bloodstream forms was readily detectable only when the 3' region of a VSG cDNA was placed downstream of the CAT gene. Two separate VSG gene promoter sequences, both cloned from T. brucei AnTat 1.3A, were equally able to direct CAT expression, which suggests that there are a number of potential VSG gene promoters in the genome, although usually only one expression site is fully active at any one time.


1992 ◽  
Vol 12 (3) ◽  
pp. 1218-1225
Author(s):  
P Paindavoine ◽  
S Rolin ◽  
S Van Assel ◽  
M Geuskens ◽  
J C Jauniaux ◽  
...  

The bloodstream form of Trypanosoma brucei contains transcripts of at least four genes showing partial sequence homology to the genes for eucaryotic adenylate and guanylate cyclases (S. Alexandre, P. Paindavoine, P. Tebabi, A. Pays, S. Halleux, M. Steinert, and E. Pays, Mol. Biochem. Parasitol. 43:279-288, 1990). One of these genes, termed ESAG 4, belongs to the polycistronic transcription unit of the variant surface glycoprotein (VSG) gene. Whereas ESAG 4 is transcribed only in the bloodstream form of the parasite, the three other genes, GRESAG 4.1, 4.2, and 4.3, are also expressed in procyclic (insect) forms. These genes differ primarily in a region presumed to encode a large extracellular domain. We show here that ESAG 4-related glycoproteins of about 150 kDa can be found in the trypanosome membrane, that they are detected, by light and electron gold immunocytochemistry, only at the surface of the flagellum, and that the products of at least two of these genes, ESAG 4 and GRESAG 4.1, can complement a Saccharomyces cerevisiae mutant for adenylate cyclase. The recombinant cyclases are associated with the yeast membrane fraction and differ with respect to their activation by calcium: while the GRESAG 4.1 and yeast cyclases are inhibited by calcium, the ESAG 4 cyclase is stimulated. ESAG 4 thus most probably encodes the calcium-activated cyclase that has been found to be expressed only in the bloodstream form of T. brucei (S. Rolin, S. Halleux, J. Van Sande, J. E. Dumont, E. Pays, and M. Steinert. Exp. Parasitol. 71:350-352, 1990). Our data suggest that the trypanosome cyclases are not properly regulated in yeast cells.


Sign in / Sign up

Export Citation Format

Share Document