The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients

2012 ◽  
Vol 26 (10) ◽  
pp. 4327-4336 ◽  
Author(s):  
Blanca Oñate ◽  
Gemma Vilahur ◽  
Raquel Ferrer‐Lorente ◽  
Juan Ybarra ◽  
Alberto Díez‐Caballero ◽  
...  
2011 ◽  
pp. P2-453-P2-453
Author(s):  
Luisa Salvatori ◽  
Giuseppe Coroniti ◽  
Francesca Caporuscio ◽  
Laura De Girolamo ◽  
Deborah Stanco ◽  
...  

10.3823/2422 ◽  
2017 ◽  
Vol 10 ◽  
Author(s):  
Marisa Gonzaga da Cunha ◽  
Flávia Cury Rezende ◽  
Ana Lucia Gonzaga da Cunha ◽  
Carlos A. Machado ◽  
Fernando Luiz Affonso Fonseca

The development of treatments using stem cells has drawn the attention of researchers to fat deposits given the fact they represent an almost unlimited reservoir of such cells, which can be accessed through minimally invasive techniques. However, the standardization of these studies has been made difficult because of the controversies of nomenclature regarding the many components of adipose tissue. Despite their distinct and independent structures with different metabolic responses, the terms hypodermis and subcutaneous adipose tissue are many times used as synonyms. However, the correct distinction between these two layers, the knowledge of their behavior and an uniformity of these terminologies are of utmost importance.             Thus, the purpose of this study was to make a bibliographic review on the theme, aiming to show the anatomical, histological and metabolic differences between these two tissues and standardize their nomenclature.


1986 ◽  
Vol 20 (11) ◽  
pp. 869-873 ◽  
Author(s):  
Henry J. Mann ◽  
Henry Buchwald

Distribution and elimination of cefamandole 2 g iv were studied in 11 morbidly obese patients during a gastric bypass operation and again on the first postoperative day. Serum, subcutaneous adipose tissue, wound drainage, and urine were analyzed by high performance liquid chromatography for cefamandole and pharmacokinetic parameters from the intraoperative period were compared to those obtained postoperatively. Total body clearance was significantly greater (p < 0.001) postoperatively (297 ml/min) than intraoperatively (254 ml/min). Volume changes were unpredictable but the elimination rate constant tended to increase postoperatively. Renal clearance and percentage of urinary recovery were significantly increased (p < 0.01) postoperatively. The patients had a mean (± SD) volume of the central compartment of 10.3 (± 2.3) L, volume at steady state of 18.3 (± 3.9) L, and elimination rate constant of 1.67 (± 0.63) h−1. Tissue concentrations of cefamandole were highest during the first hour after drug administration and were < 1 μg/g after 3.5 hours. Mean wound drainage concentrations ranged between 10 and 12 μg/ml during a dosing interval and dropped to 7 μg/ml 12 hours after the last dose. Intraoperative dosing of cefamandole is required to maintain subcutaneous adipose tissue concentrations > 1 μg/g during procedures longer than three hours in morbidly obese patients. A postoperative dose of cefamandole 2 g iv q6h will provide sustained and therapeutic concentrations in the wound drainage of morbidly obese patients.


2012 ◽  
Vol 8 (10) ◽  
pp. 757-762 ◽  
Author(s):  
Pedro Pires de Carvalho ◽  
Katie M. Hamel ◽  
Robert Duarte ◽  
Andrew G. S. King ◽  
Masudul Haque ◽  
...  

2017 ◽  
Vol 26 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Sang Woo Lee ◽  
Jae Uk Chong ◽  
Seon Ok Min ◽  
Seon Young Bak ◽  
Kyung Sik Kim

Falciform ligaments in the liver are surrounded by adipose tissue. We investigated the capability of adipose-derived stem cells from human liver falciform ligaments (hLF-ADSCs) to differentiate into hepatic-type cells and confirmed the functional capacity of the cells. Mesenchymal stem cells (MSCs) were isolated from the liver falciform ligament and abdominal subcutaneous adipose tissue in patients undergoing partial hepatectomy for liver disease. Cells were cultivated in MSC culture medium. Properties of MSCs were confirmed by flow cytometry, RT-PCR analysis, immunocytochemistry assays, and multilineage differentiation. Hepatic induction was performed using a three-step differentiation protocol with various growth factors. Morphology, capacity for expansion, and characteristics were similar between hLF-ADSCs and adipose-derived stem cells from human abdominal subcutaneous adipose tissue (hAS-ADSCs). However, hematopoietic– and mesenchymal–epithelial transition (MET)-related surface markers (CD133, CD34, CD45, and E-cadherin) had a higher expression in hLF-ADSCs. The hepatic induction marker genes had a higher expression in hLF-ADSCs on days 7 and 10 after the hepatic induction. Albumin secretion was similar between hLF-ADSCs and hAS-ADSCs at 20 days after the hepatic induction. The hLF-ADSCs had a different pattern of surface marker expression relative to hAS-ADSCs. However, proliferation, multilineage capacity, and hepatic induction were similar between the cell types. Accordingly, it may be a useful source of MSCs for patients with liver disease.


Sign in / Sign up

Export Citation Format

Share Document