A Review of Tumor Suppressor Genes in Cutaneous Neoplasms With Emphasis on Cell Cycle Regulators

1998 ◽  
Vol 20 (3) ◽  
pp. 302-313 ◽  
Author(s):  
Kathleen J. Smith ◽  
Terry L. Barrett ◽  
William F. Smith ◽  
Henry M. Skelton
MicroRNA ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 82-92 ◽  
Author(s):  
Fasoulakis Zacharias ◽  
Daskalakis George ◽  
Diakosavvas Michail ◽  
Papapanagiotou Ioannis ◽  
Theodora Marianna ◽  
...  

Aim:: To provide a review considering microRNAs regulating oncogenes and tumor suppressor genes during the different stages of cell cycle, controlling carcinogenesis. Methods:: The role of microRNAs involved as oncogenes’ and tumor suppressor genes’ regulators in cancer was searched in the relevant available literature in MEDLINE, including terms such as “microRNA”, “oncogenes”, “tumor suppressor genes”, “metastasis”, “cancer” and others. Results:: MicroRNAs determine the expression levels of multiple cell cycle regulators, such as cyclins, cyclin dependent kinases and other major cell cycle activators including retinoblastoma 1 (RB- 1) and p53, resulting in alteration and promotion/inhibition of the cell cycle. Conclusion:: MicroRNAs are proven to have a key role in cancer pathophysiology by altering the expression profile of different regulator proteins during cell division cycle and DNA replication. Thus, by acting as oncogenes and tumor suppressor genes, they can either promote or inhibit cancer development and formation, revealing their innovative role as biomarkers and therapeutic tools.


2003 ◽  
Vol 25 (5) ◽  
pp. 362-367 ◽  
Author(s):  
Ana Patiño-García ◽  
Elena Sotillo Piñeiro ◽  
Marta Zalacaín Díez ◽  
Leire Gárate Iturriagagoitia ◽  
Federico Antillón Klüssmann ◽  
...  

2016 ◽  
Vol 61 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Łukasz Witek ◽  
Tomasz Janikowski ◽  
Piotr Bodzek ◽  
Anita Olejek ◽  
Urszula Mazurek

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 4949-4958 ◽  
Author(s):  
A Hangaishi ◽  
S Ogawa ◽  
N Imamura ◽  
S Miyawaki ◽  
Y Miura ◽  
...  

It is now evident that the cell cycle machinery has a variety of elements negatively regulating cell cycle progression. However, among these negative regulators in cell cycle control, only 4 have been shown to be consistently involved in the development of human cancers as tumor suppressors: Rb (Retinoblastoma susceptibility protein), p53, and two recently identified cyclin-dependent kinase inhibitors, p16INK4A/MTS1 and p15INK4B/MTS2. Because there are functional interrelations among these negative regulators in the cell cycle machinery, it is particularly interesting to investigate the multiplicity of inactivations of these tumor suppressors in human cancers, including leukemias/lymphomas. To address this point, we examined inactivations of these four genes in primary lymphoid malignancies by Southern blot and polymerase chain reaction-single- strand conformation polymorphism analyses. We also analyzed Rb protein expression by Western blot analysis. The p16INK4A and p15INK4B genes were homozygously deleted in 45 and 42 of 230 lymphoid tumor specimens, respectively. Inactivations of the Rb and p53 genes were 27 of 91 and 9 of 173 specimens, respectively. Forty-one (45.1%) of 91 samples examined for inactivations of all four tumor suppressors had one or more abnormalities of these four tumor-suppressor genes, indicating that dysregulation of cell cycle control is important for tumor development. Statistical analysis of interrelations among impairments of these four genes indicated that inactivations of the individual tumor-suppressor genes might occur almost independently. In some patients, disruptions of multiple tumor-suppressor genes occurred; 4 cases with p16INK4A, p15INK4B, and Rb inactivations; 2 cases with p16INK4A, p15INK4B, and p53 inactivations; and 1 case with Rb and p53 inactivations. It is suggested that disruptions of multiple tumor suppressors in a tumor cell confer an additional growth advantage on the tumor.


Sign in / Sign up

Export Citation Format

Share Document