Halothane Anesthesia Attenuates Cardiopulmonary Baroreflex Control of Peripheral Resistance in Humans

1985 ◽  
Vol 63 (6) ◽  
pp. 668-674 ◽  
Author(s):  
Thomas J. Ebert ◽  
Karel J. Kotrly ◽  
Eduards J. Vucins ◽  
Christine Z. Pattison ◽  
John P. Kampine
1986 ◽  
Vol 30 (4) ◽  
pp. 202
Author(s):  
T. J. EBERT ◽  
K. J. KOTRLY ◽  
E. J. VUCINS ◽  
C. Z. PATTISON ◽  
J. P. KAMPINE

1995 ◽  
Vol 268 (1) ◽  
pp. R117-R129 ◽  
Author(s):  
M. Rodriguez-Martinez ◽  
L. L. Sawin ◽  
G. F. DiBona

Cirrhotic rats (common bile duct ligation; CBDL) have increased efferent renal sympathetic nerve activity (ERSNA), which contributes significantly to the observed renal sodium and water retention and edema formation. Basal ERSNA is increased and fails to suppress normally during intravenous isotonic saline volume expansion. Arterial and cardiopulmonary baroreflex control of ERSNA in CBDL and control (CTR) rats was examined. CBDL rats exhibited hyperdynamic circulation with increased cardiac index and decreased total peripheral resistance index and arterial pressure compared with CTR rats. Increases in left ventricular end-diastolic pressure (LVEDP) produced by volume expansion increased cardiac index normally in CBDL rats. The maximal gain of aortic baroreflex control of ERSNA was similar in CBDL and CTR rats. In CBDL rats, during decreased arterial pressure, there was a decreased range of the central component, which accounted for the decreased range of the overall aortic baroreflex, with the range of the afferent component being normal. For cardiopulmonary baroreflex control of ERSNA, the LVEDP threshold was increased and the gain was decreased in CBDL compared with CTR rats; this was due to an increased LVEDP threshold and a diminished gain of the afferent component while the central portion of the reflex was normal. These abnormalities in the cardiopulmonary baroreflex account for the attenuated decrease in ERSNA in CBDL compared with CTR rats during volume expansion. In CBDL rats, attenuation of cardiopulmonary baroreflex control of ERSNA contributes to both the increased basal ERSNA and its failure to normally suppress during volume expansion.


2006 ◽  
Vol 290 (5) ◽  
pp. H1830-H1836 ◽  
Author(s):  
Ramakrishna Mukkamala ◽  
Jong-Kyung Kim ◽  
Ying Li ◽  
Javier Sala-Mercado ◽  
Robert L. Hammond ◽  
...  

Feedback control of total peripheral resistance (TPR) by the arterial and cardiopulmonary baroreflex systems is an important mechanism for short-term blood pressure regulation. Existing methods for measuring this TPR baroreflex mechanism typically aim to quantify only the gain value of one baroreflex system as it operates in open-loop conditions. As a result, the normal, integrated functioning of the arterial and cardiopulmonary baroreflex control of TPR remains to be fully elucidated. To this end, the laboratory of Mukkamala et al. (Mukkamala R, Toska K, and Cohen RJ. Am J Physiol Heart Circ Physiol 284: H947–H959, 2003) previously proposed a potentially noninvasive technique for estimating the closed-loop (dimensionless) gain values of the arterial TPR baroreflex (GA) and the cardiopulmonary TPR baroreflex (GC) by mathematical analysis of the subtle, beat-to-beat fluctuations in arterial blood pressure, cardiac output, and stroke volume. Here, we review the technique with additional details and describe its experimental evaluation with respect to spontaneous hemodynamic variability measured from seven conscious dogs, before and after chronic arterial baroreceptor denervation. The technique was able to correctly predict the group-average changes in GA and GC that have previously been shown to occur following chronic arterial baroreceptor denervation. That is, reflex control by the arterial TPR baroreflex was virtually abolished (GA = −2.1 ± 0.6 to 0.3 ± 0.2; P < 0.05), while reflex control by the cardiopulmonary TPR baroreflex more than doubled (GC = −0.7 ± 0.4 to −1.8 ± 0.2; P < 0.05). With further successful experimental testing, the technique may ultimately be employed to advance the basic understanding of TPR baroreflex functioning in both humans and animals in health and disease.


1990 ◽  
Vol 259 (4) ◽  
pp. R792-R798 ◽  
Author(s):  
C. A. Thompson ◽  
D. L. Tatro ◽  
D. A. Ludwig ◽  
V. A. Convertino

To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low-pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baroreflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus-response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationships of the cardiopulmonary baroreflex were studied by measurements of forearm vascular resistance (FVR) and peripheral venous pressure (PVP) during low levels of lower body negative pressure (0 to -20 mmHg). Altered vascular volume had no effect on response relations of the carotid-cardiac baroreflex but did alter the gain of the cardiopulmonary baroreflex (-7.93 +/- 1.73, -4.36 +/- 1.38, and -2.56 +/- 1.59 peripheral resistance units/mmHg for hypovolemic, normovolemic, and hypervolemic, respectively) independent of shifts in baseline FVR and PVP. These results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post-flight impairment of the carotid-cardiac baroreflex.


1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


1994 ◽  
Vol 266 (1) ◽  
pp. R27-R39 ◽  
Author(s):  
G. F. DiBona ◽  
L. L. Sawin

Efferent renal sympathetic nerve activity (ERSNA) is increased in the rat with low-cardiac-output congestive heart failure (CHF; myocardial infarction). Arterial and cardiopulmonary baroreflex control of ERSNA in CHF and control rats was examined. Cardiac index and arterial pressure were lower and total peripheral resistance index, left ventricular end-diastolic pressure, and heart-to-body weight ratio were higher in CHF than in control rats. Increases in left ventricular end diastolic pressure produced by intravenous volume loading failed to increase cardiac index in CHF rats as it did in control rats. Single-unit analysis of aortic baroreceptor nerve activity showed that CHF rats had higher pressure threshold, lower frequency at pressure threshold, and lower gain than control rats. Arterial baroreflex control of ERSNA was attenuated; this was due to diminished gain of the afferent limb while the gain of the central portion of the reflex was normal. Single-unit analysis of vagal nerve activity showed that CHF rats had higher pressure threshold, lower frequency at saturation, and lower gain than control rats. Cardiopulmonary baroreflex control of ERSNA was attenuated; this was due to diminished gain of the afferent limb while the gain of the central portion of the reflex was normal. In the CHF rat, arterial and cardiopulmonary baroreflex control of ERSNA is markedly attenuated because of abnormalities in the periphery at the level of the aortic and cardiopulmonary receptors, respectively, and not in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document