Baroreflex responses to acute changes in blood volume in humans

1990 ◽  
Vol 259 (4) ◽  
pp. R792-R798 ◽  
Author(s):  
C. A. Thompson ◽  
D. L. Tatro ◽  
D. A. Ludwig ◽  
V. A. Convertino

To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low-pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baroreflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus-response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationships of the cardiopulmonary baroreflex were studied by measurements of forearm vascular resistance (FVR) and peripheral venous pressure (PVP) during low levels of lower body negative pressure (0 to -20 mmHg). Altered vascular volume had no effect on response relations of the carotid-cardiac baroreflex but did alter the gain of the cardiopulmonary baroreflex (-7.93 +/- 1.73, -4.36 +/- 1.38, and -2.56 +/- 1.59 peripheral resistance units/mmHg for hypovolemic, normovolemic, and hypervolemic, respectively) independent of shifts in baseline FVR and PVP. These results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post-flight impairment of the carotid-cardiac baroreflex.

1987 ◽  
Vol 63 (1) ◽  
pp. 105-110 ◽  
Author(s):  
G. W. Mack ◽  
X. G. Shi ◽  
H. Nose ◽  
A. Tripathi ◽  
E. R. Nadel

The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) were studied in five unfit [UF, maximal O2 consumption (VO2 max) = 38.5 ml X min-1 X kg-1] and six fit (F, VO2 max = 57.0 ml X min-1 X kg-1) subjects. We assessed the relationship between reflex stimulus, i.e., changes in central venous pressure (CVP) and response, i.e., FVR, during selective unloading of the cardiopulmonary mechanoreceptors with lower body negative pressure (0 to -20 mmHg). The linear relationship between FVR and CVP, the gain of this baroreflex, was significantly diminished in the F subjects, -2.42 +/- 0.57 U/mmHg, compared with the UF, -5.15 +/- 0.58 U/mmHg. Both groups, F and UF, had similar resting values for CVP and FVR; thus the diminished gain in F subjects was not simply an artifact resulting from a shift of the set point along the baroreflex stimulus-response curve. We also found a linear relationship between baroreflex gain and total blood volume (r = 0.59, P less than 0.05). We conclude that the gain of this vascular reflex is attenuated in trained individuals and is related to cardiovascular adaptations, such as an increased blood volume, associated with exercise training.


1997 ◽  
Vol 272 (5) ◽  
pp. H2343-H2352 ◽  
Author(s):  
T. H. Desai ◽  
J. C. Collins ◽  
M. Snell ◽  
R. Mosqueda-Garcia

We evaluated R-R interval changes (delta R-R interval) in 13 subjects (27 +/- 6 yr; 7 men and 6 women) as a function of blood pressure changes at the carotid sinus and aortic arch and central venous pressure changes at the cardiopulmonary receptors. Neck chamber pressure and suction were used to change pressure at the carotid sinus while lower body negative pressure, phenylephrine infusion, and nitroprusside infusion were used to change pressure at the carotid sinus (delta CSP), aortic arch (delta AAP), and cardiopulmonary receptors (delta CPP). Random effects regression analysis showed a significant linear relationship for delta R-R interval (-1.75 + 1.64 delta CSP + 15.40 delta AAP + 29.02 delta CPP + error), and the correlation (r) between the observed and predicted delta R-R interval was 0.82 (P < 0.00001). Sixty-seven percent of the delta R-R interval variability observed in the study is explained by the model. delta AAP accounts for approximately 63%, delta CSP for 14%, and delta CPP for 23% of the explained delta R-R interval.


1994 ◽  
Vol 266 (6) ◽  
pp. R1962-R1969 ◽  
Author(s):  
V. A. Convertino ◽  
D. F. Doerr ◽  
D. A. Ludwig ◽  
J. Vernikos

The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR) were studied in 11 healthy men before and after 7 days of 6 degrees head-down bedrest to test the hypothesis that microgravity alters this reflex response. We assessed the relationship between stimulus [changes in central venous pressure (delta CVP)] and reflex response (delta FVR) during unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP; 0 to -20 mmHg). delta CVP during bedrest and LBNP was estimated from peripheral vein pressures in the dependent right arm. Compared with prebedrest baseline, plasma volume and estimated CVP were decreased by 13 and 33%, respectively, at 7 days of bedrest. Progressive reflex forearm vasoconstriction occurred in response to graded reductions in estimated CVP during LBNP, and delta FVR per unit delta CVP was doubled after bedrest. The increase in sensitivity of the cardiopulmonary baroreflex control of FVR was related to reduced circulating blood volume, suggesting that enhanced peripheral vasoconstriction in individuals adapted to microgravity can be attributed, in part, to hypovolemia. In addition, microgravity appears to alter the stimulus for cardiopulmonary baroreceptors to a lower operational range of CVP, suggesting the possibility of chronic resetting.


2006 ◽  
Vol 100 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Shigehiko Ogoh ◽  
R. Matthew Brothers ◽  
Quinton Barnes ◽  
Wendy L. Eubank ◽  
Megan N. Hawkins ◽  
...  

The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 ± 1 yr; height 180 ± 3 cm; weight 86 ± 6 kg; means ± SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 ± 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 ± 0.6 and 2.4 ± 0.4 mmHg at rest and 2.9 ± 0.9 and 4.6 ± 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 ± 0.5 to 8.7 ± 0.6 U ( P = 0.024) and total systemic vascular conductance from 7.2 ± 0.2 to 13.5 ± 0.9 l·min−1·mmHg−1 ( P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.


1994 ◽  
Vol 267 (2) ◽  
pp. H593-H604 ◽  
Author(s):  
D. K. Levenhagen ◽  
J. M. Evans ◽  
M. Wang ◽  
C. F. Knapp

The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004–0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0–50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5–6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.


2015 ◽  
Vol 309 (9) ◽  
pp. H1591-H1597 ◽  
Author(s):  
Noud van Helmond ◽  
Blair D. Johnson ◽  
Timothy B. Curry ◽  
Andrew P. Cap ◽  
Victor A. Convertino ◽  
...  

We tested the hypothesis that markers of coagulation activation are greater during lower body negative pressure (LBNP) than those obtained during blood loss (BL). We assessed coagulation using both standard clinical tests and thrombelastography (TEG) in 12 men who performed a LBNP and BL protocol in a randomized order. LBNP consisted of 5-min stages at 0, −15, −30, and −45 mmHg of suction. BL included 5 min at baseline and following three stages of 333 ml of blood removal (up to 1,000 ml total). Arterial blood draws were performed at baseline and after the last stage of each protocol. We found that LBNP to −45 mmHg is a greater central hypovolemic stimulus versus BL; therefore, the coagulation markers were plotted against central venous pressure (CVP) to obtain stimulus-response relationships using the linear regression line slopes for both protocols. Paired t-tests were used to determine whether the slopes of these regression lines fell on similar trajectories for each protocol. Mean regression line slopes for coagulation markers versus CVP fell on similar trajectories during both protocols, except for TEG α° angle (−0.42 ± 0.96 during LBNP vs. −2.41 ± 1.13°/mmHg during BL; P < 0.05). During both LBNP and BL, coagulation was accelerated as evidenced by shortened R-times (LBNP, 9.9 ± 2.4 to 6.2 ± 1.1; BL, 8.7 ± 1.3 to 6.4 ± 0.4 min; both P < 0.05). Our results indicate that LBNP models the general changes in coagulation markers observed during BL.


2012 ◽  
Vol 303 (1) ◽  
pp. R77-R85 ◽  
Author(s):  
Federico Aletti ◽  
Manuela Ferrario ◽  
Da Xu ◽  
Danielle K. Greaves ◽  
J. Kevin Shoemaker ◽  
...  

Mild lower-body negative pressure (LBNP) has been utilized to selectively unload cardiopulmonary baroreceptors, but there is evidence that arterial baroreceptors can be transiently unloaded after the onset of mild LBNP. In this paper, a black box mathematical model for the prediction of diastolic blood pressure (DBP) variability from multiple inputs (systolic blood pressure, R-R interval duration, and central venous pressure) was applied to interpret the dynamics of blood pressure maintenance under the challenge of LBNP and in long-duration, head-down bed rest (HDBR). Hemodynamic recordings from seven participants in the WISE (Women's International Space Simulation for Exploration) Study collected during an experiment of incremental LBNP (−10 mmHg, −20 mmHg, −30 mmHg) were analyzed before and on day 50 of a 60-day-long HDBR campaign. Autoregressive spectral analysis focused on low-frequency (LF, ∼0.1 Hz) oscillations of DBP, which are related to fluctuations in vascular resistance due to sympathetic and baroreflex regulation of vasomotor tone. The arterial baroreflex-related component explained 49 ± 13% of LF variability of DBP in spontaneous conditions, and 89 ± 9% ( P < 0.05) on day 50 of HDBR, while the cardiopulmonary baroreflex component explained 17 ± 9% and 12 ± 4%, respectively. The arterial baroreflex-related variability was significantly increased in bed rest also for LBNP equal to −20 and −30 mmHg. The proposed technique provided a model interpretation of the proportional effect of arterial baroreflex vs. cardiopulmonary baroreflex-mediated components of blood pressure control and showed that arterial baroreflex was the main player in the mediation of DBP variability. Data during bed rest suggested that cardiopulmonary baroreflex-related effects are blunted and that blood pressure maintenance in the presence of an orthostatic stimulus relies mostly on arterial control.


2014 ◽  
Vol 117 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Blair D. Johnson ◽  
Noud van Helmond ◽  
Timothy B. Curry ◽  
Camille M. van Buskirk ◽  
Victor A. Convertino ◽  
...  

The purpose of this study was to compare hemodynamic and blood analyte responses to reduced central venous pressure (CVP) and pulse pressure (PP) elicited during graded lower body negative pressure (LBNP) to those observed during graded blood loss (BL) in conscious humans. We hypothesized that the stimulus-response relationships of CVP and PP to hemodynamic responses during LBNP would mimic those observed during BL. We assessed CVP, PP, heart rate, mean arterial pressure (MAP), and other hemodynamic markers in 12 men during LBNP and BL. Blood samples were obtained for analysis of catecholamines, hematocrit, hemoglobin, arginine vasopressin, and blood gases. LBNP consisted of 5-min stages at 0, 15, 30, and 45 mmHg of suction. BL consisted of 5 min at baseline and following three stages of 333 ml of hemorrhage (1,000 ml total). Individual r2 values and linear regression slopes were calculated to determine whether the stimulus (CVP and PP)-hemodynamic response trajectories were similar between protocols. The CVP-MAP trajectory was the only CVP-response slope that was statistically different during LBNP compared with BL (0.93 ± 0.27 vs. 0.13 ± 0.26; P = 0.037). The PP-heart rate trajectory was the only PP-response slope that was statistically different during LBNP compared with BL (−1.85 ± 0.45 vs. −0.46 ± 0.27; P = 0.024). Norepinephrine, hematocrit, and hemoglobin were all lower at termination in the BL protocol compared with LBNP ( P < 0.05). Consistent with our hypothesis, LBNP mimics the hemodynamic stimulus-response trajectories observed during BL across a significant range of CVP in humans.


1996 ◽  
Vol 80 (6) ◽  
pp. 1903-1910 ◽  
Author(s):  
X. Shi ◽  
K. M. Gallagher ◽  
R. M. Welch-O'Connor ◽  
B. H. Foresman

This study was designed to test the hypothesis that aging diminished baroreflex function during central hypovolemia. Eleven healthy young and eleven older (age 60-69 yr) individuals were assessed by using heart rate (HR) and mean arterial pressure (MAP) responses to neck pressure and suction during rest and lower body negative pressure (LBNP) of -15 Torr. The slope of forearm vascular resistance to central venous pressure during low-level LBNP was assessed as the index of cardiopulmonary baroreflex sensitivity. Baseline cardiovascular variables were not significantly different between the groups. In addition, there was no group difference in cardiopulmonary baroreflex (-3.6 vs. -3.7 units/mmHg for young vs. older, respectively) or carotid baroreflex (-0.39 vs. -0.35 beats.min-1.mmHg-1 and -0.26 vs. -0.35 mmHg/mmHg, for young vs. older, respectively) sensitivity. LBNP did not affect either HR or MAP, whereas it decreased CVP and increased FVR in both groups. LBNP significantly augmented the carotid-HR (-0.47 +/- 0.03 beats.min-1.mmHg-1) and carotid-MAP (-0.42 +/- 0.04 mmHg/mmHg) reflex gains in the young subjects only. We concluded that there was no difference in the discrete baroreflex function between the two age groups; however, the interaction of cardiopulmonary baroreceptors with carotid baroreflex function was absent in the older subjects, suggesting that the central integration of afferent neural inputs from the discrete baroreceptors was altered with aging.


1991 ◽  
Vol 260 (3) ◽  
pp. R642-R648 ◽  
Author(s):  
J. A. Miller ◽  
J. S. Floras ◽  
K. L. Skorecki ◽  
L. M. Blendis ◽  
A. G. Logan

The renal and neurohumoral effects of prolonged cardiopulmonary baroreflex unloading and the relationship of these changes to urinary sodium excretion have not been well documented in humans. In this study, 12 normal males underwent lower body negative pressure at -15 mmHg for 90 min, a maneuver that deactivates cardiopulmonary baroreceptors. Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), and filtration fraction (FF) were measured in eight of these subjects using inulin and p-aminohippuric acid clearance techniques. During reduction of central venous pressure, arterial blood pressure and heart rate did not change. Plasma concentrations of atrial natriuretic factor (ANF) decreased markedly (22 +/- 2 to 12 +/- 1 pg/ml, P = 0.0001) as did the second messenger of ANF's biological action, guanosine 3',5'-cyclic monophosphate, whereas renin and vasopressin were not significantly altered. There was a significant rise in plasma norepinephrine (1.6 +/- 0.2 to 2.4 +/- 0.4 nmol/l, P = 0.03). GFR (104 +/- 9 to 68 +/- 6 ml/min, P = 0.007) and FF (0.18 +/- 0.01 to 0.14 +/- 0.01, P = 0.007) decreased significantly, with maintenance of ERPF. There was a significant antinatriuresis without an antikaliuresis and a significant reduction in free water clearance. These changes in renal hemodynamics are unlike the known effects of renal vasoconstrictors, and the alterations in solute and free water clearance are consistent with the removal of the known actions of ANF from tubular target sites. Taken together, our findings suggest that a mechanism other than activation of vasoconstrictors, possibly the diminution of the influence of ANF on the kidney, may be operative in the renal adjustments to cardiopulmonary baroreflex deactivation in humans.


Sign in / Sign up

Export Citation Format

Share Document