Mechanoenergetics of the Negative Inotropism of Isoflurane in the Canine Left Ventricle 

1997 ◽  
Vol 87 (1) ◽  
pp. 82-93 ◽  
Author(s):  
Yasunori Nakayama ◽  
Miyako Takaki ◽  
Kunihisa Kohno ◽  
Junichi Araki ◽  
Hiroyuki Suga

Background The mechanisms underlying the negative inotropic effects of isoflurane are incompletely understood. One suggested mechanism is that isoflurane may decrease Ca2+ sensitivity of contractile proteins. If so, more free calcium would be needed to activate contractile proteins to the same degree, which would impose a greater requirement for myocardial oxygen consumption used in the cycling of calcium. In this study, the authors use the excised, cross-circulated, canine heart model and the volume servopump technique to measure the effects of isoflurane on Emax (a contractile index) and on the relationship between pressure-volume area (PVA, a measure of total mechanical energy) and myocardial oxygen consumption per beat (VO2). Methods Effects of intracoronary isoflurane infused via a precoronary oxygenator on myocardial mechanoenergetics were studied during isovolumic contractions. The authors measured left ventricular (LV) pressure, LV volume, coronary flow, and arteriovenous oxygen content difference and computed Emax, VO2 and PVA at 0, 1.0, 1.5, and 2.0% isoflurane. From these data, the authors obtained oxygen costs of PVA and Emax in control subjects and in those receiving 2.0% isoflurane. Results Emax, PVA, and VO2 dose-dependently decreased by similar degrees (P < 0.05). Isoflurane did not change the oxygen costs at 1.5% and 2.0% concentration (P < 0.05). Conclusions These mechanoenergetic findings suggest that the primary method by which isoflurane decreases contractility is not by decreasing Ca2+ sensitivity of contractile proteins but mainly by decreasing Ca2+ handling in the excitation-contraction coupling without myocardial oxygen wasting effect.

1983 ◽  
Vol 244 (2) ◽  
pp. H206-H214 ◽  
Author(s):  
H. Suga ◽  
R. Hisano ◽  
S. Hirata ◽  
T. Hayashi ◽  
O. Yamada ◽  
...  

Left ventricular (LV) systolic pressure-volume area (PVA), a new measure of total mechanical energy for the contraction, linearly correlates with its oxygen consumption per beat (VO2) regardless of contraction mode in a canine heart with stable chronotropism and inotropism. PVA is the area in the pressure-volume (PV) diagram circumscribed by the end-systolic and end-diastolic PV relation curves and the systolic segment of the PV loop and has dimensions of energy. We investigated whether primary changes in heart rate would affect the VO2-PVA relation. In the excised cross-circulated canine heart with left ventricular load controlled with a servo pump, we changed heart rate by pacing to compare the VO2-PVA relations at low [124 +/- 17 (SD) min-1] and high (193 +/- 23) heart rates. In 15 left ventricles, VO2 (ml O2 X beat-1 X 100 g LV-1) was (1.75 +/- 0.57) X 10(-5) PVA (mmHg X ml X beat-1 X 100 g LV-1) + 0.031 +/- 0.011 (ml O2 X beat-1 X 100 g LV-1). The VO2-PVA relation was virtually independent of heart rate in individual hearts. We conclude that the load-independent VO2-PVA relationship is not affected by chronotropism in a given canine left ventricle.


2000 ◽  
Vol 279 (6) ◽  
pp. H2855-H2864 ◽  
Author(s):  
Akio Saeki ◽  
Yoichi Goto ◽  
Katsuya Hata ◽  
Toshiyuki Takasago ◽  
Takehiko Nishioka ◽  
...  

Heart temperature affects left ventricular (LV) function and myocardial metabolism. However, how and whether increasing heart temperature affects LV mechanoenergetics remain unclear. We designed the present study to investigate effects of increased temperature by 5°C from 36°C on LV contractility and energetics. We analyzed the LV contractility index ( Emax) and the relation between the myocardial oxygen consumption (MV˙o2) and the pressure-volume area (PVA; a measure of LV total mechanical energy) in isovolumically contracting isolated canine hearts during normothermia (NT) and hyperthermia (HT). HT reduced Emaxby 38% ( P < 0.01) and shortened time to Emaxby 20% ( P < 0.05). HT, however, altered neither the slope nor the unloaded MV˙o2of the MV˙o2-PVA relation. HT increased the oxygen cost of contractility (the incremental ratio of unloaded MV˙o2to Emax) by 49%. When Ca2+infusion restored the reduced LV contractility during HT to the NT baseline level, the unloaded MV˙o2in HT exceeded the NT value by 36%. We conclude that HT-induced negative inotropism accompanies an increase in the oxygen cost of contractility.


1997 ◽  
Vol 87 (3) ◽  
pp. 658-666 ◽  
Author(s):  
Kunihisa Kohno ◽  
Miyako Takaki ◽  
Kazunari Ishioka ◽  
Yasunori Nakayama ◽  
Shunsuke Suzuki ◽  
...  

Background It is still unclear whether fentanyl directly alters left ventricular (LV) contractility and oxygen consumption. This is because of the difficulty in defining and evaluating contractility and energy use independently of ventricular loading conditions and heart rate in beating whole hearts. Methods This study was conducted to clarify the mechanoenergetic effects of intracoronary fentanyl in six excised cross-circulated canine hearts. The authors used the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-VO2 (myocardial oxygen consumption per beat) relationship practically independent of ventricular loading conditions. The authors measured LV pressure, volume, coronary flow, and arteriovenous oxygen content difference to calculate Emax, PVA, and VO2. They first obtained the VO2-PVA relationship for varied LV volumes at control Emax. The authors then obtained the VO2-PVA relationship at a constant LV volume, whereas coronary blood fentanyl concentration was increased in steps up to 240 ng/ml. Finally, they obtained the VO2-PVA relationship for varied LV volumes at the final dose of fentanyl. Results Fentanyl at any concentrations did not significantly change Emax, PVA, and VO2 from the control. The linear end-systolic pressure-volume relations and their slopes were virtually the same between the control and fentanyl volume loading in each heart. Further, either the slope (oxygen cost of PVA) or the VO2 intercept (unloaded VO2) of the linear VO2-PVA relationship remained unchanged by fentanyl. Conclusions These results indicate that intracoronary fentanyl produces virtually no effects on LV mechanoenergetics for a wide range of its blood concentration.


1997 ◽  
Vol 86 (6) ◽  
pp. 1350-1358 ◽  
Author(s):  
Kunihisa Kohno ◽  
Miyako Takaki ◽  
Kazunari Ishioka ◽  
Yasunori Nakayama ◽  
Shunsuke Suzuki ◽  
...  

Background It is still unclear whether fentanyl directly alters left ventricular (LV) contractility and oxygen consumption. This is because of the difficulty in defining and evaluating contractility and energy use independently of ventricular loading conditions and heart rate in beating whole hearts. Methods This study was conducted to clarify the mechanoenergetic effects of intracoronary fentanyl in six excised cross-circulated canine hearts. The authors used the framework of the E(max) (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-VO2 (myocardial oxygen consumption per beat) relationship practically independent of ventricular loading conditions. The authors measured LV pressure, volume, coronary flow, and arteriovenous oxygen content difference to calculate E(max), PVA, and VO2. They first obtained the VO2-PVA relationship for varied LV volumes at control E(max). The authors then obtained the VO2-PVA relationship at a constant LV volume, whereas coronary blood fentanyl concentration was increased in steps up to 240 ng/ml. Finally, they obtained the VO2-PVA relationship for varied LV volumes at the final dose of fentanyl. Results Fentanyl at any concentrations did not significantly change E(max), PVA, and VO2 from the control. The linear end-systolic pressure-volume relations and their slopes were virtually the same between the control and fentanyl volume loading in each heart. Further, either the slope (oxygen cost of PVA) or the VO2 intercept (unloaded VO2) of the linear VO2-PVA relationship remained unchanged by fentanyl. Conclusions These results indicate that intracoronary fentanyl produces virtually no effects on LV mechanoenergetics for a wide range of its blood concentration.


Author(s):  
Takuya Nishikawa ◽  
Kazunori Uemura ◽  
Yohsuke Hayama ◽  
Toru Kawada ◽  
Keita Saku ◽  
...  

AbstractBeta-blockers are well known to reduce myocardial oxygen consumption (MVO2) and improve the prognosis of heart failure (HF) patients. However, its negative chronotropic and inotropic effects limit their use in the acute phase of HF due to the risk of circulatory collapse. In this study, as a first step for a safe β-blocker administration strategy, we aimed to develop and evaluate the feasibility of an automated β-blocker administration system. We developed a system to monitor arterial pressure (AP), left atrial pressure (PLA), right atrial pressure, and cardiac output. Using negative feedback of hemodynamics, the system controls AP and PLA by administering landiolol (an ultra-short-acting β-blocker), dextran, and furosemide. We applied the system for 60 min to 6 mongrel dogs with rapid pacing-induced HF. In all dogs, the system automatically adjusted the doses of the drugs. Mean AP and mean PLA were controlled within the acceptable ranges (AP within 5 mmHg below target; PLA within 2 mmHg above target) more than 95% of the time. Median absolute performance error was small for AP [median (interquartile range), 3.1% (2.2–3.8)] and PLA [3.6% (2.2–5.7)]. The system decreased MVO2 and PLA significantly. We demonstrated the feasibility of an automated β-blocker administration system in a canine model of acute HF. The system controlled AP and PLA to avoid circulatory collapse, and reduced MVO2 significantly. As the system can help the management of patients with HF, further validations in larger samples and development for clinical applications are warranted.


1994 ◽  
Vol 266 (2) ◽  
pp. H730-H740 ◽  
Author(s):  
K. Hata ◽  
Y. Goto ◽  
O. Kawaguchi ◽  
T. Takasago ◽  
A. Saeki ◽  
...  

The effect of acidosis on left ventricular (LV) mechanoenergetics was assessed in seven excised, cross-circulated dog hearts with the use of the frameworks of the contractility index (Emax) and the relationship between myocardial oxygen consumption (VO2) and pressure-volume area (PVA; a measure of the LV total mechanical energy). Acidosis was stably maintained without hypoxia by appropriately mixing CO2 and air in a membrane oxygenator in the coronary arterial perfusion circuit. Acidosis [pH: 6.98 +/- 0.09 (SD), PCO2: 91 +/- 25 mmHg in the coronary arterial blood] decreased Emax by 45 +/- 12% (P < 0.01) and PVA by 47 +/- 12% (P < 0.01) at a fixed LV volume. When the preacidosis Emax level was restored by Ca2+ infusion during acidosis, unloaded VO2 (the VO2 intercept of the VO2-PVA relation) exceeded the control value by 19 +/- 17% (P < 0.05), indicating that acidosis required higher VO2 for nonmechanical activities at a matched Emax. Moreover, the oxygen cost of enhanced contractility (the incremental ratio of unloaded VO2 to Emax) was 1.53 +/- 0.40 times higher (P < 0.01) during acidosis than preacidosis. We conclude that acidosis results in LV contractile dysfunction accompanied by an increased oxygen cost of contractility. This increased energy cost of the excitation-contraction coupling can be accounted for by a decreased Ca2+ sensitivity of the contractile proteins during acidosis.


1999 ◽  
Vol 277 (1) ◽  
pp. H65-H73 ◽  
Author(s):  
Takeshi Mikane ◽  
Junichi Araki ◽  
Shunsuke Suzuki ◽  
Ju Mizuno ◽  
Juichiro Shimizu ◽  
...  

We investigated the effects of myocardial temperature on left ventricular (LV) mechanoenergetics in the excised, cross-circulated canine heart. We used the framework of the LV contractility ( Emax)-pressure-volume area (PVA; a measure of total mechanical energy)-myocardial oxygen consumption (Vo2) relationship. We have shown this framework to be useful to integrative analysis of the mechanoenergetics of a beating heart. In isovolumic contractions at a constant pacing rate, increasing myocardial temperature from 30 to 40°C depressed Emaxand increased the oxygen cost of Emax, which was enhanced by dobutamine, in a linear manner. However, the slope of the Vo2-PVA relation (reciprocal of contractile efficiency) and its Vo2intercept remained constant. Q10values of Emax, the oxygen cost of Emax, and the oxygen cost of PVA were 0.4, 2.1 and 1.0, respectively, around normothermia. We conclude that the temperature-dependent processes of cross-bridge cycling and Ca2+handling integratively depress Emaxand augment its oxygen cost without affecting the oxygen cost of PVA as myocardial temperature increases by 10°C around normothermia.


2001 ◽  
Vol 95 (6) ◽  
pp. 1396-1405 ◽  
Author(s):  
Christof Stamm ◽  
Douglas B. Cowan ◽  
Ingeborg Friehs ◽  
Sabrena Noria ◽  
Pedro J. del Nido ◽  
...  

Background Bacterial endotoxin (lipopolysaccharide [LPS]) induces septic shock and depressed myocardial contractility. The mechanism of LPS-mediated cardiac dysfunction remains controversial. We hypothesized that LPS exerts significant effects on myocardial excitation-contraction coupling by rapid stimulation of tumor necrosis factor alpha (TNF-alpha) expression in the heart. Methods Isolated rat hearts were studied with and without recirculation of cell-free perfusate. The effects of LPS, exogenous TNF-alpha, anti-TNF-alpha antibody, and ceramidase inhibition were examined. Measurements included myocardial uptake of LPS, left ventricular contractility, myocardial oxygen consumption, intracellular calcium [Ca2+] cycling, and TNF-alpha concentrations in coronary perfusate and myocardium. Results Lipopolysaccharide was rapidly taken up by the perfused heart. With non-recirculating perfusion, LPS had no effect on contractility, oxygen consumption, coronary vascular resistance, or intracellular free calcium concentration ([Ca2+]i). However, with recirculating perfusion contractility was significantly impaired after 30 min of LPS, associated with lower [Ca2+]i levels and attenuated systolic rise in [Ca2+]i. Significant amounts of TNF-alpha accumulated in recirculating perfusate and myocardial tissue from LPS-perfused hearts. Ceramidase inhibition or neutralizing anti-TNF-alpha antibody inhibited the effects of LPS on contractility and [Ca2+]i. Recombinant rat TNF-alpha mimicked the LPS effects with faster onset. Conclusions Lipopolysaccharide exerts rapid, negative inotropic effects on the isolated whole rat heart. The reduction in contractility is associated with depressed intracellular calcium cycling. In response to LPS, TNF-alpha is rapidly released from the heart and mediates the effects of LPS via the sphingomyelinase pathway. The present study for the first time directly links LPS-stimulated TNF-alpha production, abnormal calcium cycling, and decreased contractility in intact hearts.


1995 ◽  
Vol 269 (2) ◽  
pp. H609-H620 ◽  
Author(s):  
J. R. Elbeery ◽  
J. C. Lucke ◽  
M. P. Feneley ◽  
G. W. Maier ◽  
C. H. Owen ◽  
...  

A new practical descriptor of metabolic to mechanical myocardial energy transfer (MET), termed the virtual work model, was evaluated in 32 conscious dogs and in 8 isolated canine hearts. An index of total mechanical energy expenditure (TME) was calculated as the sum of external energy (stroke work) and an internal energy index of heat (left ventricular end-diastolic volume times left ventricular mean ejection pressure). Physiological comparison of TME (x-axis) and myocardial oxygen consumption (MVO2; y-axis) yielded highly linear MET relationships (mean r = 0.93 +/- 0.07), with an average slope of 0.86 +/- 0.39 (SD) and a y-intercept of 9.1 +/- 6.4 mW/ml myocardium. The linear MVO2-TME relationship did not vary under steady-state vs. dynamic vena caval occlusion, increased heart rate, increased afterload, or increased inotropic state with calcium infusion. Compared with five other indexes of myocardial energetics, the virtual work model of MET was the most linear, the most practical in not requiring determination of the end-systolic pressure-volume relationship, and the most accurate predictor of MVO2 under normal and altered hemodynamic conditions.


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


Sign in / Sign up

Export Citation Format

Share Document