Mechanical determinants of myocardial oxygen consumption in conscious dogs

1995 ◽  
Vol 269 (2) ◽  
pp. H609-H620 ◽  
Author(s):  
J. R. Elbeery ◽  
J. C. Lucke ◽  
M. P. Feneley ◽  
G. W. Maier ◽  
C. H. Owen ◽  
...  

A new practical descriptor of metabolic to mechanical myocardial energy transfer (MET), termed the virtual work model, was evaluated in 32 conscious dogs and in 8 isolated canine hearts. An index of total mechanical energy expenditure (TME) was calculated as the sum of external energy (stroke work) and an internal energy index of heat (left ventricular end-diastolic volume times left ventricular mean ejection pressure). Physiological comparison of TME (x-axis) and myocardial oxygen consumption (MVO2; y-axis) yielded highly linear MET relationships (mean r = 0.93 +/- 0.07), with an average slope of 0.86 +/- 0.39 (SD) and a y-intercept of 9.1 +/- 6.4 mW/ml myocardium. The linear MVO2-TME relationship did not vary under steady-state vs. dynamic vena caval occlusion, increased heart rate, increased afterload, or increased inotropic state with calcium infusion. Compared with five other indexes of myocardial energetics, the virtual work model of MET was the most linear, the most practical in not requiring determination of the end-systolic pressure-volume relationship, and the most accurate predictor of MVO2 under normal and altered hemodynamic conditions.

1999 ◽  
Vol 276 (4) ◽  
pp. H1339-H1345 ◽  
Author(s):  
Christian Korvald ◽  
Odd P. Elvenes ◽  
Lars M. Ytrebø ◽  
Dag G. Sørlie ◽  
Truls Myrmel

In the “virtual work model,” left ventricular total mechanical energy (TME) is linearly related to myocardial oxygen consumption (MV˙o2). This relationship (MV˙o2-TME) is supposedly independent of inotropic stimulation, vascular loading, and heart rate variations. We reexamined the effect of inotropic stimulation (dopamine) on the metabolic to mechanical energy transfer in nine open-chest anesthetized pigs. Left ventricular mechanical energy was calculated using TME (mean ejection pressure × end-diastolic volume + stroke work), TMEW(end-diastolic volume reduced by unstressed ventricular volume), and the pressure-volume area (PVA). A highly linear relationship between MV˙o2and mechanical energy was found for all three indexes during control and dopamine runs ( r = 0.87–0.99). The slopes were unaltered by dopamine. y-Axis intercepts were (control vs. dopamine) as follows (in J ⋅ beat−1⋅ 100 mg−1; means ± SD): TME, 0.36 ± 0.12 vs. 0.61 ± 0.30 ( P< 0.02); TMEW, 0.43 ± 0.16 vs. 0.72 ± 0.32 ( P < 0.02); and PVA, 0.34 ± 0.13 vs. 0.60 ± 0.30 ( P < 0.02). We conclude that the virtual work model is dependent on inotropic stimulation and that new insight into myocardial chemomechanical coupling is not added by this concept.


1991 ◽  
Vol 261 (1) ◽  
pp. H70-H76 ◽  
Author(s):  
W. C. Little ◽  
C. P. Cheng

We investigated the criteria for the coupling of the left ventricle (LV) and the arterial system to maximize LV stroke work (SW) and the transformation of LV pressure-volume area (PVA) to SW. We studied eight conscious dogs that were instrumented to measure LV pressure and determine LV volume from three ultrasonically determined dimensions. The LV end-systolic pressure (PES)-volume (VES) relation was determined by caval occlusion. Its slope (EES) was compared with the arterial elastance (EA) and determined as PES per stroke volume. At rest, with intact reflexes, EES/EA was 0.96 +/- 0.20 EES/EA was varied over a wide range (0.18-2.59) by the infusion of graded doses of phenylephrine and nitroprusside before and during administration of dobutamine. Maximum LV SW, at constant inotropic state and end-diastolic volume (VED), occurred when EES/EA equaled 0.99 +/- 0.15. At constant VED and contractile state, SW was within 20% of its maximum value when EES/EA was between 0.56 and 2.29. The conversion of LV PVA to SW increased as EES/EA increased. The shape of the observed relations of the SW to EES/EA and SW/PVA to EES/EA was similar to that predicted by the theoretical consideration of LV PES-VES and arterial PES-stroke volume relations. We conclude that the LV and arterial system produce maximum SW at constant VED when EES and EA are equal; however, the relation of SW to EES/EA has a broad plateau. Only when EA greatly exceeds EES does the SW fall substantially. However, the conversion of PVA to SW increases as EES/EA increases. These observations support the utility of analyzing LV-arterial coupling in the pressure-volume plane.


1990 ◽  
Vol 258 (4) ◽  
pp. H1208-H1215
Author(s):  
N. Chung ◽  
X. Wu ◽  
K. R. Bailey ◽  
E. L. Ritman

The relationship between left ventricular (LV) myocardial oxygen consumption (MVO2) and LV systolic pressure-volume area (PVA) was investigated in anesthetized closed-chest dogs with intact reflexes and subsequently with beta-adrenergic blockade, with or without simultaneous muscarinic blockade. LV chamber volumes were measured using a fast computerized tomography (CT) scanner (dynamic spatial reconstructor, DSR) at 33-ms intervals. Myocardial blood flow was measured from the DSR scans of aortic root angiograms. With intact reflexes, LV MVO2 (Y) related to PVA (X) values as Y = (4.28 +/- 1.81)X + (1.94 +/- 6.0) (n = 24) (mJ.g-1.cycle-1). With beta-adrenergic blockade, LV MVO2 (Y) related to PVA (X) value as Y = (4.24 +/- 1.03)X - (6.43 +/- 6.5), (n = 9) (mJ.g-1.cycle-1). With beta-adrenergic and muscarinic blockade, LV MVO2 (Y) related to PVA (X) value as Y = (2.84 +/- 1.72)X + (3.51 +/- 5.15), (n = 13) (mJ.g-1.cycle-1). The slopes of these regressions are higher than the slopes demonstrated by others in isolated ventricles but very similar to those demonstrated in open-chest dogs.


2008 ◽  
Vol 294 (1) ◽  
pp. H238-H248 ◽  
Author(s):  
Patricia N. Banfor ◽  
Lee C. Preusser ◽  
Thomas J. Campbell ◽  
Kennan C. Marsh ◽  
James S. Polakowski ◽  
...  

Levosimendan enhances cardiac contractility via Ca2+ sensitization and induces vasodilation through the activation of ATP-dependent K+ and large-conductance Ca2+-dependent K+ channels. However, the hemodynamic effects of levosimendan, as well as its metabolites, OR-1896 and OR-1855, relative to plasma concentrations achieved, are not well defined. Thus levosimendan, OR-1896, OR-1855, or vehicle was infused at 0.01, 0.03, 0.1, and 0.3 μmol·kg−1·30 min−1, targeting therapeutic to supratherapeutic concentrations of total levosimendan (62.6 ng/ml). Results were compared with those of the β1-agonist dobutamine and the phosphodiesterase 3 inhibitor milrinone. Peak concentrations of levosimendan, OR-1896, and OR-1855 were 455 ± 21, 126 ± 6, and 136 ± 6 ng/ml, respectively. Levosimendan and OR-1896 produced dose-dependent reductions in mean arterial pressure (−31 ± 2 and −42 ± 3 mmHg, respectively) and systemic resistance without affecting pulse pressure, effects paralleled by increases in heart rate; OR-1855 produced no effect at any dose tested. Dobutamine, but not milrinone, increased mean arterial pressure and pulse pressure (17 ± 2 and 23 ± 2 mmHg, respectively). Regarding potency to elicit reductions in time to peak pressure and time to systolic pressure recovery: OR-1896 > levosimendan > milrinone > dobutamine. Levosimendan and OR-1896 elicited dose-dependent increases in change in pressure over time (118 ± 10 and 133 ± 13%, respectively), concomitant with reductions in left ventricular end-diastolic pressure and ejection time. However, neither levosimendan nor OR-1896 produced increases in myocardial oxygen consumption at inotropic and vasodilatory concentrations, whereas dobutamine increased myocardial oxygen consumption (79% above baseline). Effects of the levosimendan and OR-1896 were limited to the systemic circulation; neither compound produced changes in pulmonary pressure, whereas dobutamine produced profound increases (74 ± 13%). Thus levosimendan and OR-1896 are hemodynamically active in the anesthetized dog at concentrations observed clinically and elicit cardiovascular effects consistent with activation of both K+ channels and Ca2+ sensitization, whereas OR-1855 is inactive on endpoints measured in this study.


1983 ◽  
Vol 244 (2) ◽  
pp. H206-H214 ◽  
Author(s):  
H. Suga ◽  
R. Hisano ◽  
S. Hirata ◽  
T. Hayashi ◽  
O. Yamada ◽  
...  

Left ventricular (LV) systolic pressure-volume area (PVA), a new measure of total mechanical energy for the contraction, linearly correlates with its oxygen consumption per beat (VO2) regardless of contraction mode in a canine heart with stable chronotropism and inotropism. PVA is the area in the pressure-volume (PV) diagram circumscribed by the end-systolic and end-diastolic PV relation curves and the systolic segment of the PV loop and has dimensions of energy. We investigated whether primary changes in heart rate would affect the VO2-PVA relation. In the excised cross-circulated canine heart with left ventricular load controlled with a servo pump, we changed heart rate by pacing to compare the VO2-PVA relations at low [124 +/- 17 (SD) min-1] and high (193 +/- 23) heart rates. In 15 left ventricles, VO2 (ml O2 X beat-1 X 100 g LV-1) was (1.75 +/- 0.57) X 10(-5) PVA (mmHg X ml X beat-1 X 100 g LV-1) + 0.031 +/- 0.011 (ml O2 X beat-1 X 100 g LV-1). The VO2-PVA relation was virtually independent of heart rate in individual hearts. We conclude that the load-independent VO2-PVA relationship is not affected by chronotropism in a given canine left ventricle.


2000 ◽  
Vol 279 (6) ◽  
pp. H2855-H2864 ◽  
Author(s):  
Akio Saeki ◽  
Yoichi Goto ◽  
Katsuya Hata ◽  
Toshiyuki Takasago ◽  
Takehiko Nishioka ◽  
...  

Heart temperature affects left ventricular (LV) function and myocardial metabolism. However, how and whether increasing heart temperature affects LV mechanoenergetics remain unclear. We designed the present study to investigate effects of increased temperature by 5°C from 36°C on LV contractility and energetics. We analyzed the LV contractility index ( Emax) and the relation between the myocardial oxygen consumption (MV˙o2) and the pressure-volume area (PVA; a measure of LV total mechanical energy) in isovolumically contracting isolated canine hearts during normothermia (NT) and hyperthermia (HT). HT reduced Emaxby 38% ( P < 0.01) and shortened time to Emaxby 20% ( P < 0.05). HT, however, altered neither the slope nor the unloaded MV˙o2of the MV˙o2-PVA relation. HT increased the oxygen cost of contractility (the incremental ratio of unloaded MV˙o2to Emax) by 49%. When Ca2+infusion restored the reduced LV contractility during HT to the NT baseline level, the unloaded MV˙o2in HT exceeded the NT value by 36%. We conclude that HT-induced negative inotropism accompanies an increase in the oxygen cost of contractility.


1997 ◽  
Vol 87 (3) ◽  
pp. 658-666 ◽  
Author(s):  
Kunihisa Kohno ◽  
Miyako Takaki ◽  
Kazunari Ishioka ◽  
Yasunori Nakayama ◽  
Shunsuke Suzuki ◽  
...  

Background It is still unclear whether fentanyl directly alters left ventricular (LV) contractility and oxygen consumption. This is because of the difficulty in defining and evaluating contractility and energy use independently of ventricular loading conditions and heart rate in beating whole hearts. Methods This study was conducted to clarify the mechanoenergetic effects of intracoronary fentanyl in six excised cross-circulated canine hearts. The authors used the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-VO2 (myocardial oxygen consumption per beat) relationship practically independent of ventricular loading conditions. The authors measured LV pressure, volume, coronary flow, and arteriovenous oxygen content difference to calculate Emax, PVA, and VO2. They first obtained the VO2-PVA relationship for varied LV volumes at control Emax. The authors then obtained the VO2-PVA relationship at a constant LV volume, whereas coronary blood fentanyl concentration was increased in steps up to 240 ng/ml. Finally, they obtained the VO2-PVA relationship for varied LV volumes at the final dose of fentanyl. Results Fentanyl at any concentrations did not significantly change Emax, PVA, and VO2 from the control. The linear end-systolic pressure-volume relations and their slopes were virtually the same between the control and fentanyl volume loading in each heart. Further, either the slope (oxygen cost of PVA) or the VO2 intercept (unloaded VO2) of the linear VO2-PVA relationship remained unchanged by fentanyl. Conclusions These results indicate that intracoronary fentanyl produces virtually no effects on LV mechanoenergetics for a wide range of its blood concentration.


2004 ◽  
Vol 287 (5) ◽  
pp. H2115-H2121 ◽  
Author(s):  
E. K. Walsh ◽  
H. Huang ◽  
Z. Wang ◽  
J. Williams ◽  
R. de Crom ◽  
...  

Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVo2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) ( n = 22) and wild-type (WT) mice ( n = 24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 ± 2.3 to 109 ± 2.3 mmHg; P < 0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 ± 0.8 to 7.6 ± 0.4 4 mmHg·ml−1·min; P < 0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 ± 0.4 mmHg·ml−1·min) compared with male eNOS mice (8.6 ± 0.5, mmHg·ml·min−1; P < 0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVo2 was determined as the percent decrease during increasing doses (10−10 to 10−4 mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10−12 to 10−6 mol/l), or S-nitroso- N-acetyl penicillamine (SNAP; 10−7 to 10−4 mol/l). Baseline MVo2 was not different between WT (181 ± 13 nmol·g−1·min−1) and eNOS Tg (188 ± 14 nmol·g−1·min−1). BK decreased MVo2 (10−4 mol/l) in WT by 17% ± 1.1 and 33% ± 2.7 in eNOS Tg ( P < 0.05). CCh also decreased MVo2, 10−4 mol/l, in WT by 20% ± 1.7 and 31% ± 2.0 in eNOS Tg ( P < 0.05). Forskolin (10−6 mol/l) or SNAP (10−4 mol/l) also decreased MVo2 in WT by 24% ± 2.8 and 36% ± 1.8 versus eNOS 31% ± 1.8 and 37% ± 3.5, respectively. N-nitro-l-arginine methyl ester (10−3 mol/l) inhibited the MVo2 reduction to BK, CCh, and forskolin by a similar degree ( P < 0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVo2 by eNOS-derived NO.


1993 ◽  
Vol 264 (6) ◽  
pp. H1817-H1824 ◽  
Author(s):  
P. P. De Tombe ◽  
S. Jones ◽  
D. Burkhoff ◽  
W. C. Hunter ◽  
D. A. Kass

Recent clinical and animal studies have suggested that ventricular-vascular coupling normally operates at either optimal ventricular efficiency (EFF = stroke work/myocardial oxygen consumption) or stroke work (SW) and that efficiency in particular is compromised by cardiac dysfunction. These distinctions between coupling states at maximal work vs. efficiency are largely based on theoretical models. To date, there are few direct experimental data defining optimal conditions for each parameter, respectively, in the same heart or tests of whether changes from these conditions must produce significant declines in both parameters. Therefore, 10 isolated blood-perfused canine hearts were studied at varying contractilities, with the heart ejecting into a simulated three-element Windkessel model of arterial impedance. For a given inotropic state [indexed by the slope of the end-systolic pressure-volume relationship (Ees)], myocardial oxygen consumption and SW were measured over a broad range of afterload resistances. The latter was indexed by the effective arterial elastance (Ea) and ventricular-vascular interaction expressed by the ratio of Ea to Ees (Ea/Ees). On average, maximal SW occurred at Ea/Ees = 0.80 +/- 0.16, whereas EFF was maximal at Ea/Ees = 0.70 +/- 0.15 (P < 0.01). However, these differences were small, and both SW and EFF were > or = 90% of their respective optima over a broad overlapping range of Ea-to-Ees ratios (0.3-1.3, corresponds with ejection fractions ranging from approximately 40 to 80%). These data show that both SW and efficiency are nearly maximal under many conditions of ventricular-vascular interaction.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document