Sevoflurane Protects Rat Mixed Cerebrocortical Neuronal–Glial Cell Cultures against Transient Oxygen–Glucose Deprivation

2006 ◽  
Vol 105 (5) ◽  
pp. 990-998 ◽  
Author(s):  
Paula T. Canas ◽  
Lionel J. Velly ◽  
Christelle N. Labrande ◽  
Benjamin A. Guillet ◽  
Valérie Sautou-Miranda ◽  
...  

Background The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Methods Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Results Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Conclusion Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Renata P Assis ◽  
Juliana FA Castro ◽  
Vânia O Gutierres ◽  
Carlos A Arcaro ◽  
Renata S Brotto ◽  
...  

2007 ◽  
Vol 140 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Wilhelmina M.U. van Grevenstein ◽  
Arend G.J. Aalbers ◽  
Sander ten Raa ◽  
Wim Sluiter ◽  
Leo J. Hofland ◽  
...  

2015 ◽  
Vol 35 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Alberto Julio-Amilpas ◽  
Teresa Montiel ◽  
Eva Soto-Tinoco ◽  
Cristian Gerónimo-Olvera ◽  
Lourdes Massieu

Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury.


Sign in / Sign up

Export Citation Format

Share Document